Stanwick
Archaeological site
in
United Kingdom
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Location
Lab ID | Context | Material | Taxon | Method | Uncalibrated age | Calibrated age | References |
---|---|---|---|---|---|---|---|
SUERC-24060 | charcoal | NA | NA | 1970±35 BP | Bevan 2017 Bird et al. 2022 | ||
SUERC-24061 | charcoal | NA | NA | 1920±35 BP | Bevan 2017 Bird et al. 2022 | ||
SUERC-26417 | charcoal | NA | NA | 2055±35 BP | Bevan 2017 Bird et al. 2022 | ||
SUERC-26418 | grain (charred) | NA | NA | 2065±35 BP | Bevan 2017 Bird et al. 2022 | ||
SUERC-26467 | charcoal | NA | NA | 2005±35 BP | Bevan 2017 Bird et al. 2022 | ||
SUERC-26468 | grain (charred) | NA | NA | 2025±35 BP | Bevan 2017 Bird et al. 2022 |
Classification | Estimated age | References |
---|---|---|
Neolithic | NA | Archaeometry 39(1), 1997, 247-262 |
Neolithic | NA | Oxford Date List 23 |
Neolithic | NA | Oxford Date List 23 |
EN | NA | NA |
EN | NA | NA |
EN | NA | NA |
Bibliographic references
- No bibliographic information available. [Archaeometry 39(1), 1997, 247-262]
- No bibliographic information available. [Oxford Date List 23]
- Bevan, A. H. (2017). Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate [Data set]. UCL Institute of Archaeology. https://doi.org/10.14324/000.ds.10025178 [Bevan2017]
- No bibliographic information available. [Housley 1994 58]
- No bibliographic information available. [Pargeter J. Loftus E. Stewart B. Mackay A. and Mitchell P. 2017.New ages from Boomplaas Cave South Africa provide increased resolution on late/terminal Pleistocene human behavioural variability. Azania: Archaeological Research in Africa]
- No bibliographic information available. [Thorp C.R. 1996. A preliminary report on evidence of interaction between hunter-gatherers and farmers along a hypothesised frontier in the eastern Free State.The South African Archaeological Bulletin pp.57-63.]
- Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
- Manning, K., Timpson, A., Colledge, S., Crema, E., & Shennan, S. (2015). The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset [Data set]. https://discovery.ucl.ac.uk/id/eprint/1469811/ [EUROEVOL]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Archaeometry 39(1), 1997, 247-262,
}
@misc{Oxford Date List 23,
}
@dataset{Bevan2017,
title = {Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate},
author = {Bevan, A. H.},
date = {2017-10-20},
publisher = {UCL Institute of Archaeology},
location = {London, UK},
doi = {10.14324/000.ds.10025178},
url = {https://discovery.ucl.ac.uk/id/eprint/10025178/},
urldate = {2023-09-07},
langid = {english}
}
@misc{Housley 1994 58,
}
@misc{Pargeter J. Loftus E. Stewart B. Mackay A. and Mitchell P. 2017.New ages from Boomplaas Cave South Africa provide increased resolution on late/terminal Pleistocene human behavioural variability. Azania: Archaeological Research in Africa,
}
@misc{Thorp C.R. 1996. A preliminary report on evidence of interaction between hunter-gatherers and farmers along a hypothesised frontier in the eastern Free State.The South African Archaeological Bulletin pp.57-63.,
}
@misc{CalPal,
title = {CalPal Edition 2022.9},
author = {Weninger, Bernie},
year = {2022},
month = {sep},
doi = {1010.5281/zenodo.7422618},
url = {https://zenodo.org/record/7422618},
abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
copyright = {Creative Commons Attribution 4.0 International, Open Access},
howpublished = {Zenodo},
month_numeric = {9}
}
@dataset{EUROEVOL,
title = {The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset},
author = {Manning, K. and Timpson, A. and Colledge, S. and Crema, E. and Shennan, S.},
date = {2015-07-09},
url = {https://discovery.ucl.ac.uk/id/eprint/1469811/},
urldate = {2023-09-07},
abstract = {This dataset comprises the primary data collected for the Cultural Evolution of Neolithic Europe project (EUROEVOL), led by Professor Stephen Shennan, UCL. The dataset offers the largest repository of archaeological site and radiocarbon data from Neolithic Europe (4,757 sites and 14,131 radiocarbon samples), dating between the late Mesolithic and Early Bronze Age, as well as the largest collections of archaeobotanical data (>8300 records for 729 different species, genera and families, and the largest collection of animal bone data with >3 million NISP counts and >36,000 biometrics.},
langid = {english}
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
{"bibtex_key":"Archaeometry 39(1), 1997, 247-262","bibtex_type":"misc"}{"bibtex_key":"Oxford Date List 23","bibtex_type":"misc"}[{"bibtex_key":"Bevan2017","bibtex_type":"dataset","title":"{Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate}","author":"{Bevan, A. H.}","date":"{2017-10-20}","publisher":"{UCL Institute of Archaeology}","location":"{London, UK}","doi":"{10.14324/000.ds.10025178}","url":"{https://discovery.ucl.ac.uk/id/eprint/10025178/}","urldate":"{2023-09-07}","langid":"{english}"}]{"bibtex_key":"Housley 1994 58","bibtex_type":"misc"}{"bibtex_key":"Pargeter J. Loftus E. Stewart B. Mackay A. and Mitchell P. 2017.New ages from Boomplaas Cave South Africa provide increased resolution on late/terminal Pleistocene human behavioural variability. Azania: Archaeological Research in Africa","bibtex_type":"misc"}{"bibtex_key":"Thorp C.R. 1996. A preliminary report on evidence of interaction between hunter-gatherers and farmers along a hypothesised frontier in the eastern Free State.The South African Archaeological Bulletin pp.57-63.","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"EUROEVOL","bibtex_type":"dataset","title":"{The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset}","author":"{Manning, K. and Timpson, A. and Colledge, S. and Crema, E. and Shennan, S.}","date":"{2015-07-09}","url":"{https://discovery.ucl.ac.uk/id/eprint/1469811/}","urldate":"{2023-09-07}","abstract":"{This dataset comprises the primary data collected for the Cultural Evolution of Neolithic Europe project (EUROEVOL), led by Professor Stephen Shennan, UCL. The dataset offers the largest repository of archaeological site and radiocarbon data from Neolithic Europe (4,757 sites and 14,131 radiocarbon samples), dating between the late Mesolithic and Early Bronze Age, as well as the largest collections of archaeobotanical data (>8300 records for 729 different species, genera and families, and the largest collection of animal bone data with >3 million NISP counts and >36,000 biometrics.}","langid":"{english}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Archaeometry 39(1), 1997, 247-262
:bibtex_type: :misc
---
:bibtex_key: Oxford Date List 23
:bibtex_type: :misc
---
- :bibtex_key: Bevan2017
:bibtex_type: :dataset
:title: "{Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller,
D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human
Population Demonstrate Repeated Links to Food Production and Climate}"
:author: "{Bevan, A. H.}"
:date: "{2017-10-20}"
:publisher: "{UCL Institute of Archaeology}"
:location: "{London, UK}"
:doi: "{10.14324/000.ds.10025178}"
:url: "{https://discovery.ucl.ac.uk/id/eprint/10025178/}"
:urldate: "{2023-09-07}"
:langid: "{english}"
---
:bibtex_key: Housley 1994 58
:bibtex_type: :misc
---
:bibtex_key: 'Pargeter J. Loftus E. Stewart B. Mackay A. and Mitchell P. 2017.New
ages from Boomplaas Cave South Africa provide increased resolution on late/terminal
Pleistocene human behavioural variability. Azania: Archaeological Research in Africa'
:bibtex_type: :misc
---
:bibtex_key: Thorp C.R. 1996. A preliminary report on evidence of interaction between
hunter-gatherers and farmers along a hypothesised frontier in the eastern Free State.The
South African Archaeological Bulletin pp.57-63.
:bibtex_type: :misc
---
- :bibtex_key: CalPal
:bibtex_type: :misc
:title: "{CalPal Edition 2022.9}"
:author: "{Weninger, Bernie}"
:year: "{2022}"
:month: "{sep}"
:doi: "{1010.5281/zenodo.7422618}"
:url: "{https://zenodo.org/record/7422618}"
:abstract: "{CalPal is scientific freeware for 14C-based chronological research
for Holocene and Palaeolithic Archaeology.}"
:copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
:howpublished: "{Zenodo}"
:month_numeric: "{9}"
---
- :bibtex_key: EUROEVOL
:bibtex_type: :dataset
:title: "{The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset}"
:author: "{Manning, K. and Timpson, A. and Colledge, S. and Crema, E. and Shennan,
S.}"
:date: "{2015-07-09}"
:url: "{https://discovery.ucl.ac.uk/id/eprint/1469811/}"
:urldate: "{2023-09-07}"
:abstract: "{This dataset comprises the primary data collected for the Cultural
Evolution of Neolithic Europe project (EUROEVOL), led by Professor Stephen Shennan,
UCL. The dataset offers the largest repository of archaeological site and radiocarbon
data from Neolithic Europe (4,757 sites and 14,131 radiocarbon samples), dating
between the late Mesolithic and Early Bronze Age, as well as the largest collections
of archaeobotanical data (>8300 records for 729 different species, genera and
families, and the largest collection of animal bone data with >3 million NISP
counts and >36,000 biometrics.}"
:langid: "{english}"
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"