Site type

Location

Coordinates (degrees)
065.025° N, 057.435° E
Coordinates (DMS)
065° 01' 00" E, 057° 26' 00" N
Country (ISO 3166)
Russian Federation (RU)

radiocarbon date Radiocarbon dates (30)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
LE-3047 toothàNA NA 25740±500 BP Slimak 2011. Science 832: 841-845 Bird et al. 2022
LU-3979 bone NA NA 29160±430 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-3983 ivory NA NA 29170±340 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-3989 bone Coelodonta antiquitatis Linty NA NA 27490±330 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-3992 bone Coelodonta antiquitatis Linty NA NA 28510±310 BP Pavel Pvlov 2001. Nature 413: 64-67. Magerud J. 1999. Boreas 28: 46-80. Svendsen J. z.a. In: JoÔøΩo ZilhÔøΩo Trabalhos de Arqueologia 33. Bird et al. 2022
LU-3995 bone Coelodonta antiquitatis Linty NA NA 27110±240 BP Pavel Pvlov 2001. Nature 413: 64-67. Magerud J. 1999. Boreas 28: 46-80. Svendsen J. z.a. In: JoÔøΩo ZilhÔøΩo Trabalhos de Arqueologia 33. Bird et al. 2022
LU-4573 bone NA NA 28500±340 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4574 bone NA NA 28640±570 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4575 ivory NA NA 29710±520 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4576 bone NA NA 27800±440 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4581 bone NA NA 28590±380 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4582 bone NA NA 29680±900 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4583 bone NA NA 28690±250 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4584 bone NA NA 29930±1840 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4589 bone NA NA 27100±380 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4590 bone NA NA 29980±470 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
LU-4591 bone NA NA 29270±390 BP Kiel DB 2013 Bird et al. 2022
T-11498 tusk NA NA 27740±480 BP Pavel Pvlov 2001. Nature 413: 64-67. Magerud J. 1999. Boreas 28: 46-80. Svendsen J. z.a. In: JoÔøΩo ZilhÔøΩo Trabalhos de Arqueologia 33. Bird et al. 2022
T-13438 boneàWooly rhinoceros NA NA 30700±260 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022
T-13439 bone NA NA 28490±290 BP Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J. 1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845. Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Slimak  2011. Science 832: 841-845,
  
}
@misc{Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J.  1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845.,
  
}
@misc{Pavel Pvlov  2001. Nature 413: 64-67. Magerud J.  1999. Boreas 28: 46-80.  Svendsen J. z.a. In: JoÔøΩo ZilhÔøΩo  Trabalhos de Arqueologia 33.,
  
}
@misc{Kiel DB 2013,
  
}
@article{Jorgensen2020,
  title = {The Palaeodemographic and Environmental Dynamics of Prehistoric Arctic Norway: An Overview of Human-Climate Covariation},
  shorttitle = {The Palaeodemographic and Environmental Dynamics of Prehistoric Arctic Norway},
  author = {Jørgensen, Erlend Kirkeng},
  date = {2020-05-30},
  journaltitle = {Quaternary International},
  shortjournal = {Quaternary International},
  series = {Long-Term Perspectives on Circumpolar Social-Ecological Systems},
  volume = {549},
  pages = {36–51},
  issn = {1040-6182},
  doi = {10.1016/j.quaint.2018.05.014},
  url = {https://www.sciencedirect.com/science/article/pii/S1040618217315124},
  urldate = {2023-09-07},
  abstract = {This paper presents the first palaeodemographic results of a newly assembled region-wide radiocarbon record of the Arctic regions of northern Norway. The dataset contains a comprehensive collection of radiocarbon dates in the area (N\,= 1205) and spans the 10,000-year period of hunter-gatherer settlement history from 11500 to 1500 cal BP. Utilizing local, high-resolution palaeoclimate data, the paper performs multi-proxy correlation testing of climate and demographic dynamics, looking for hunter-gatherer responses to climate variability. The paper compares both long-term climate trends and short-term disruptive climate events with the demographic development in the region. The results demonstrate marked demographic fluctuations throughout the period, characterized by a general increase, punctuated by three significant boom and bust-cycles centred on 6000, 3800 and 2200 cal BP, interpreted as instances of climate forcing of human demographic responses. The results strongly suggest the North Cape Current as a primary driver in the local environment and supports the patterns of covariance between coastal climate proxies and the palaeodemographic model. A mechanism of climate forcing mediation through marine trophic webs is proposed as a tentative explanation of the observed demographic fluxes, and a comparison with inter-regional results demonstrate remarkable similarity in demographic trends across mid-Holocene north and west Europe. The results of the north Norwegian radiocarbon record are thus consistent with independent, international efforts, corroborating the existing pan-European results and help further substantiate super-regional climate variability as the primary driver of population dynamics regardless of economic adaptation.},
  keywords = {Archaeology,Human ecology,Human/climate covariation,Northern Norway,Palaeodemographic modelling,Summed probability distribution (SPD)}
}
@misc{Vermeersch2019,
  
}
@misc{Mujika J.A.  2012. El Paleolitico Superior Cantabrico: 97-112.,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Slimak  2011. Science 832: 841-845","bibtex_type":"misc"}{"bibtex_key":"Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud J.  1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845.","bibtex_type":"misc"}{"bibtex_key":"Pavel Pvlov  2001. Nature 413: 64-67. Magerud J.  1999. Boreas 28: 46-80.  Svendsen J. z.a. In: JoÔøΩo ZilhÔøΩo  Trabalhos de Arqueologia 33.","bibtex_type":"misc"}{"bibtex_key":"Kiel DB 2013","bibtex_type":"misc"}[{"bibtex_key":"Jorgensen2020","bibtex_type":"article","title":"{The Palaeodemographic and Environmental Dynamics of Prehistoric Arctic Norway: An Overview of Human-Climate Covariation}","shorttitle":"{The Palaeodemographic and Environmental Dynamics of Prehistoric Arctic Norway}","author":"{Jørgensen, Erlend Kirkeng}","date":"{2020-05-30}","journaltitle":"{Quaternary International}","shortjournal":"{Quaternary International}","series":"{Long-Term Perspectives on Circumpolar Social-Ecological Systems}","volume":"{549}","pages":"{36–51}","issn":"{1040-6182}","doi":"{10.1016/j.quaint.2018.05.014}","url":"{https://www.sciencedirect.com/science/article/pii/S1040618217315124}","urldate":"{2023-09-07}","abstract":"{This paper presents the first palaeodemographic results of a newly assembled region-wide radiocarbon record of the Arctic regions of northern Norway. The dataset contains a comprehensive collection of radiocarbon dates in the area (N\\,= 1205) and spans the 10,000-year period of hunter-gatherer settlement history from 11500 to 1500 cal BP. Utilizing local, high-resolution palaeoclimate data, the paper performs multi-proxy correlation testing of climate and demographic dynamics, looking for hunter-gatherer responses to climate variability. The paper compares both long-term climate trends and short-term disruptive climate events with the demographic development in the region. The results demonstrate marked demographic fluctuations throughout the period, characterized by a general increase, punctuated by three significant boom and bust-cycles centred on 6000, 3800 and 2200 cal BP, interpreted as instances of climate forcing of human demographic responses. The results strongly suggest the North Cape Current as a primary driver in the local environment and supports the patterns of covariance between coastal climate proxies and the palaeodemographic model. A mechanism of climate forcing mediation through marine trophic webs is proposed as a tentative explanation of the observed demographic fluxes, and a comparison with inter-regional results demonstrate remarkable similarity in demographic trends across mid-Holocene north and west Europe. The results of the north Norwegian radiocarbon record are thus consistent with independent, international efforts, corroborating the existing pan-European results and help further substantiate super-regional climate variability as the primary driver of population dynamics regardless of economic adaptation.}","keywords":"{Archaeology,Human ecology,Human/climate covariation,Northern Norway,Palaeodemographic modelling,Summed probability distribution (SPD)}"}]{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}{"bibtex_key":"Mujika J.A.  2012. El Paleolitico Superior Cantabrico: 97-112.","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: 'Slimak  2011. Science 832: 841-845'
:bibtex_type: :misc
---
:bibtex_key: 'Kanivetz V.I. Palaeolithic of the North-East of Europe Moscow 1976 (in
  russian). Pavlov P.Yu. IN: From Kostionki to Clovis Plenum-press N-Y 1992. Magerud
  J.  1999. Boreas 28: 46-80. Slimak 2011. Science 332 841: 841-845.'
:bibtex_type: :misc
---
:bibtex_key: 'Pavel Pvlov  2001. Nature 413: 64-67. Magerud J.  1999. Boreas 28: 46-80.  Svendsen
  J. z.a. In: JoÔøΩo ZilhÔøΩo  Trabalhos de Arqueologia 33.'
:bibtex_type: :misc
---
:bibtex_key: Kiel DB 2013
:bibtex_type: :misc
---
- :bibtex_key: Jorgensen2020
  :bibtex_type: :article
  :title: "{The Palaeodemographic and Environmental Dynamics of Prehistoric Arctic
    Norway: An Overview of Human-Climate Covariation}"
  :shorttitle: "{The Palaeodemographic and Environmental Dynamics of Prehistoric Arctic
    Norway}"
  :author: "{Jørgensen, Erlend Kirkeng}"
  :date: "{2020-05-30}"
  :journaltitle: "{Quaternary International}"
  :shortjournal: "{Quaternary International}"
  :series: "{Long-Term Perspectives on Circumpolar Social-Ecological Systems}"
  :volume: "{549}"
  :pages: "{36–51}"
  :issn: "{1040-6182}"
  :doi: "{10.1016/j.quaint.2018.05.014}"
  :url: "{https://www.sciencedirect.com/science/article/pii/S1040618217315124}"
  :urldate: "{2023-09-07}"
  :abstract: "{This paper presents the first palaeodemographic results of a newly
    assembled region-wide radiocarbon record of the Arctic regions of northern Norway.
    The dataset contains a comprehensive collection of radiocarbon dates in the area
    (N\\,= 1205) and spans the 10,000-year period of hunter-gatherer settlement history
    from 11500 to 1500 cal BP. Utilizing local, high-resolution palaeoclimate data,
    the paper performs multi-proxy correlation testing of climate and demographic
    dynamics, looking for hunter-gatherer responses to climate variability. The paper
    compares both long-term climate trends and short-term disruptive climate events
    with the demographic development in the region. The results demonstrate marked
    demographic fluctuations throughout the period, characterized by a general increase,
    punctuated by three significant boom and bust-cycles centred on 6000, 3800 and
    2200 cal BP, interpreted as instances of climate forcing of human demographic
    responses. The results strongly suggest the North Cape Current as a primary driver
    in the local environment and supports the patterns of covariance between coastal
    climate proxies and the palaeodemographic model. A mechanism of climate forcing
    mediation through marine trophic webs is proposed as a tentative explanation of
    the observed demographic fluxes, and a comparison with inter-regional results
    demonstrate remarkable similarity in demographic trends across mid-Holocene north
    and west Europe. The results of the north Norwegian radiocarbon record are thus
    consistent with independent, international efforts, corroborating the existing
    pan-European results and help further substantiate super-regional climate variability
    as the primary driver of population dynamics regardless of economic adaptation.}"
  :keywords: "{Archaeology,Human ecology,Human/climate covariation,Northern Norway,Palaeodemographic
    modelling,Summed probability distribution (SPD)}"
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
:bibtex_key: 'Mujika J.A.  2012. El Paleolitico Superior Cantabrico: 97-112.'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog