Site type

Location

Coordinates (degrees)
032.338° S, 018.317° E
Coordinates (DMS)
032° 20' 00" E, 018° 19' 00" S
Country (ISO 3166)
South Africa (ZA)

radiocarbon date Radiocarbon dates (28)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Pta-6690 marine shell NA NA 2000±25 BP Döckel W. 1998.Re-investigation of the Matjes River rock shelter(Masters dissertation Stellenbosch: Stellenbosch University). Bird et al. 2022
Pta-6693 marine shell NA NA 2340±60 BP Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town). Bird et al. 2022
Pta-6694 marine shell NA NA 2220±60 BP Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town). Bird et al. 2022
Pta-6698 marine shell NA NA 1735±30 BP Mazel A.D. 1997. Mzinyashana Shelters 1 and 2: excavation of mid and late Holocene deposits in the eastern Biggarsberg Thukela Basin South Africa.Southern African Humanities9(12) pp.1-35. Bird et al. 2022
Pta-6705 marine shell NA NA 2070±25 BP Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town). Bird et al. 2022
Pta-6707 marine shell NA NA 2160±50 BP Mazel A.D. 1997. Mzinyashana Shelters 1 and 2: excavation of mid and late Holocene deposits in the eastern Biggarsberg Thukela Basin South Africa.Southern African Humanities9(12) pp.1-35. Bird et al. 2022
Pta-6711 marine shell NA NA 985±25 BP Mazel A.D. 1997. Mzinyashana Shelters 1 and 2: excavation of mid and late Holocene deposits in the eastern Biggarsberg Thukela Basin South Africa.Southern African Humanities9(12) pp.1-35. Bird et al. 2022
Pta-7013 marine shell NA NA 2270±25 BP Jerardino A. Wiltshire N. Webley L. Tusenius M. Halkett D. Hoffman M.T. and Maggs T. 2014. Site distribution and chronology at Soutpansklipheuwel a rocky outcrop on the West Coast of South Africa.The Journal of Island and Coastal Archaeology9(1) pp.88-110. Bird et al. 2022

typological date Typological dates (28)

Classification Estimated age References
LSA NA jerardino1996csl
NA NA
LSA NA jerardino1996csl
NA NA
LSA NA jerardino1996csl
NA NA
LSA NA jerardino1996csl
NA NA

Bibliographic reference Bibliographic references

@misc{jerardino1996csl,
  
}
@misc{Mazel A.D. 1984. Gehle Shelter: report on excavations in the uplands ecological zone Tugela Basin Natal South Africa.Annals of the Natal Museum26(1) pp.1-24.,
  
}
@misc{Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town).,
  
}
@misc{Kuman K. and Clarke R.J. 1986. Florisbad—new investigations at a Middle Stone Age hominid site in South Africa.Geoarchaeology1(2) pp.103-125.,
  
}
@misc{SARD,
  
}
@misc{Patrick M.K. 1989.An archaeological anthropological study of the human skeletal remains from the Oakhurst Rockshelter George Cape Province Southern Africa(Doctoral dissertation University of Cape Town).,
  
}
@misc{Pistorius J.C. 1995. Radio-carbon dates from the Mabyanamatshwaana complex.South African Journal of Ethnology18(3) pp.123-127.,
  
}
@misc{Döckel W. 1998.Re-investigation of the Matjes River rock shelter(Masters dissertation Stellenbosch: Stellenbosch University).,
  
}
@misc{Mazel A.D. 1997. Mzinyashana Shelters 1 and 2: excavation of mid and late Holocene deposits in the eastern Biggarsberg Thukela Basin South Africa.Southern African Humanities9(12) pp.1-35.,
  
}
@misc{Jerardino A. Wiltshire N. Webley L. Tusenius M. Halkett D. Hoffman M.T. and Maggs T. 2014. Site distribution and chronology at Soutpansklipheuwel a rocky outcrop on the West Coast of South Africa.The Journal of Island and Coastal Archaeology9(1) pp.88-110.,
  
}
@misc{SARD,
  url = {https://github.com/emmaloftus/Southern-African-Radiocarbon-Database},
  note = { Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"jerardino1996csl","bibtex_type":"misc"}{"bibtex_key":"Mazel A.D. 1984. Gehle Shelter: report on excavations in the uplands ecological zone Tugela Basin Natal South Africa.Annals of the Natal Museum26(1) pp.1-24.","bibtex_type":"misc"}{"bibtex_key":"Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town).","bibtex_type":"misc"}{"bibtex_key":"Kuman K. and Clarke R.J. 1986. Florisbad—new investigations at a Middle Stone Age hominid site in South Africa.Geoarchaeology1(2) pp.103-125.","bibtex_type":"misc"}{"bibtex_key":"SARD","bibtex_type":"misc"}{"bibtex_key":"Patrick M.K. 1989.An archaeological anthropological study of the human skeletal remains from the Oakhurst Rockshelter George Cape Province Southern Africa(Doctoral dissertation University of Cape Town).","bibtex_type":"misc"}{"bibtex_key":"Pistorius J.C. 1995. Radio-carbon dates from the Mabyanamatshwaana complex.South African Journal of Ethnology18(3) pp.123-127.","bibtex_type":"misc"}{"bibtex_key":"Döckel W. 1998.Re-investigation of the Matjes River rock shelter(Masters dissertation Stellenbosch: Stellenbosch University).","bibtex_type":"misc"}{"bibtex_key":"Mazel A.D. 1997. Mzinyashana Shelters 1 and 2: excavation of mid and late Holocene deposits in the eastern Biggarsberg Thukela Basin South Africa.Southern African Humanities9(12) pp.1-35.","bibtex_type":"misc"}{"bibtex_key":"Jerardino A. Wiltshire N. Webley L. Tusenius M. Halkett D. Hoffman M.T. and Maggs T. 2014. Site distribution and chronology at Soutpansklipheuwel a rocky outcrop on the West Coast of South Africa.The Journal of Island and Coastal Archaeology9(1) pp.88-110.","bibtex_type":"misc"}[{"bibtex_key":"SARD","bibtex_type":"misc","url":"{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}","note":"{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: jerardino1996csl
:bibtex_type: :misc
---
:bibtex_key: 'Mazel A.D. 1984. Gehle Shelter: report on excavations in the uplands
  ecological zone Tugela Basin Natal South Africa.Annals of the Natal Museum26(1)
  pp.1-24.'
:bibtex_type: :misc
---
:bibtex_key: Jerardino AMS. 1996.Changing social landscapes of the western Cape coast
  of southern Africa over the last 4500 years(Doctoral dissertation University of
  Cape Town).
:bibtex_type: :misc
---
:bibtex_key: Kuman K. and Clarke R.J. 1986. Florisbad—new investigations at a Middle
  Stone Age hominid site in South Africa.Geoarchaeology1(2) pp.103-125.
:bibtex_type: :misc
---
:bibtex_key: SARD
:bibtex_type: :misc
---
:bibtex_key: Patrick M.K. 1989.An archaeological anthropological study of the human
  skeletal remains from the Oakhurst Rockshelter George Cape Province Southern Africa(Doctoral
  dissertation University of Cape Town).
:bibtex_type: :misc
---
:bibtex_key: Pistorius J.C. 1995. Radio-carbon dates from the Mabyanamatshwaana complex.South
  African Journal of Ethnology18(3) pp.123-127.
:bibtex_type: :misc
---
:bibtex_key: 'Döckel W. 1998.Re-investigation of the Matjes River rock shelter(Masters
  dissertation Stellenbosch: Stellenbosch University).'
:bibtex_type: :misc
---
:bibtex_key: 'Mazel A.D. 1997. Mzinyashana Shelters 1 and 2: excavation of mid and
  late Holocene deposits in the eastern Biggarsberg Thukela Basin South Africa.Southern
  African Humanities9(12) pp.1-35.'
:bibtex_type: :misc
---
:bibtex_key: Jerardino A. Wiltshire N. Webley L. Tusenius M. Halkett D. Hoffman M.T.
  and Maggs T. 2014. Site distribution and chronology at Soutpansklipheuwel a rocky
  outcrop on the West Coast of South Africa.The Journal of Island and Coastal Archaeology9(1)
  pp.88-110.
:bibtex_type: :misc
---
- :bibtex_key: SARD
  :bibtex_type: :misc
  :url: "{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}"
  :note: "{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon
    database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog