Site types
Settlement and

Location

Coordinates (degrees)
NA
Coordinates (DMS)
NA
Country (ISO 3166)
Israel (IL)

radiocarbon date Radiocarbon dates (40)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
GrN-14623 charcoal Triticum 14C 5670±40 BP Garfinkel 1999 Weninger 2022
GrN-16357 charcoal Olea 14C 6030±60 BP Garfinkel 1999 Weninger 2022
GrN-16358 charcoal Olea 14C 5745±35 BP Garfinkel 1999 Weninger 2022
GrN-17496 charcoal NA 14C 5650±40 BP Burton and Levy 2001 Weninger 2022
GrN-17497 charcoal NA 14C 5860±40 BP Lovell 2007 Weninger 2022
Ly-6248 charcoal NA 14C 5685±65 BP Lovell 2007 Weninger 2022
Ly-6249 charcoal NA 14C 5580±120 BP Lovell 2007 Weninger 2022
Ly-6251 charcoal NA 14C 5545±75 BP Lovell 2007 Weninger 2022
Ly-6252 charcoal NA 14C 5180±110 BP Lovell 2007 Weninger 2022
Ly-6253 charcoal NA 14C 5860±70 BP Lovell 2007 Weninger 2022
Ly-6256 charcoal NA 14C 5230±55 BP Lovell 2001 Weninger 2022
Ly-6257 charcoal NA 14C 5385±90 BP Lovell 2007 Weninger 2022
Ly-6174 charcoal NA 14C 6170±50 BP Lovell 2007 Weninger 2022
Ly-6247 charcoal NA 14C 6115±70 BP Lovell 2007 Weninger 2022
Ly-6254 charcoal NA 14C 6230±55 BP Lovell 2007 Weninger 2022
Ly-6255 charcoal NA 14C 6215±70 BP Lovell 2007 Weninger 2022
Ly-6258 charcoal NA 14C 5205±95 BP Lovell 2007 Weninger 2022
Ly-6259 charcoal NA 14C 6170±60 BP Lovell 2007 Weninger 2022
OxA-7805 charcoal NA 14C 5680±45 BP Garfinkel 1999 Weninger 2022
GrN-14623 Phase III; level 2a; 648, locus 113 grain (charred) Triticum turgidum dicoccum NA 5670±40 BP Flohr et al. 2016 Palmisano et al. 2022

typological date Typological dates (19)

Classification Estimated age References
Chalcolithic NA Garfinkel 1999
Chalcolithic NA Garfinkel 1999
Chalcolithic NA Garfinkel 1999
Chalcolithic NA Burton and Levy 2001
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2001
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Lovell 2007
Chalcolithic NA Garfinkel 1999

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Garfinkel 1999]
  • No bibliographic information available. [Burton and Levy 2001]
  • No bibliographic information available. [Lovell 2007]
  • No bibliographic information available. [Lovell 2001]
  • No bibliographic information available. [Flohr et al. 2016]
  • No bibliographic information available. [CalPal; Flohr et al. 2016]
  • No bibliographic information available. [CalPal]
  • No bibliographic information available. [Flohr et al. 2016; CalPal]
  • No bibliographic information available. [Flohretal2016]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Palmisano, A., Bevan, A., Lawrence, D., & Shennan, S. (2022). The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP. 10(0), 2. https://doi.org/10.5334/joad.90 [NERD]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Garfinkel 1999,
  
}
@misc{Burton and Levy 2001,
  
}
@misc{Lovell 2007,
  
}
@misc{Lovell 2001,
  
}
@misc{Flohr et al. 2016,
  
}
@misc{CalPal; Flohr et al. 2016,
  
}
@misc{CalPal,
  
}
@misc{Flohr et al. 2016; CalPal,
  
}
@misc{Flohretal2016,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{NERD,
  title = {The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP},
  shorttitle = {The NERD Dataset},
  author = {Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen},
  date = {2022-02-22},
  volume = {10},
  number = {0},
  pages = {2},
  publisher = {Ubiquity Press},
  issn = {2049-1565},
  doi = {10.5334/joad.90},
  url = {https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90},
  urldate = {2023-09-07},
  abstract = {To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.},
  issue = {0},
  langid = {american},
  file = {/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Garfinkel 1999","bibtex_type":"misc"}{"bibtex_key":"Burton and Levy 2001","bibtex_type":"misc"}{"bibtex_key":"Lovell 2007","bibtex_type":"misc"}{"bibtex_key":"Lovell 2001","bibtex_type":"misc"}{"bibtex_key":"Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"CalPal; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"CalPal","bibtex_type":"misc"}{"bibtex_key":"Flohr et al. 2016; CalPal","bibtex_type":"misc"}{"bibtex_key":"Flohretal2016","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"NERD","bibtex_type":"article","title":"{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP}","shorttitle":"{The NERD Dataset}","author":"{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}","date":"{2022-02-22}","volume":"{10}","number":"{0}","pages":"{2}","publisher":"{Ubiquity Press}","issn":"{2049-1565}","doi":"{10.5334/joad.90}","url":"{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}","urldate":"{2023-09-07}","abstract":"{To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.}","issue":"{0}","langid":"{american}","file":"{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Garfinkel 1999
:bibtex_type: :misc
---
:bibtex_key: Burton and Levy 2001
:bibtex_type: :misc
---
:bibtex_key: Lovell 2007
:bibtex_type: :misc
---
:bibtex_key: Lovell 2001
:bibtex_type: :misc
---
:bibtex_key: Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: CalPal; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: CalPal
:bibtex_type: :misc
---
:bibtex_key: Flohr et al. 2016; CalPal
:bibtex_type: :misc
---
:bibtex_key: Flohretal2016
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: NERD
  :bibtex_type: :article
  :title: "{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500
    Cal. Yr. BP}"
  :shorttitle: "{The NERD Dataset}"
  :author: "{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}"
  :date: "{2022-02-22}"
  :volume: "{10}"
  :number: "{0}"
  :pages: "{2}"
  :publisher: "{Ubiquity Press}"
  :issn: "{2049-1565}"
  :doi: "{10.5334/joad.90}"
  :url: "{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}"
  :urldate: "{2023-09-07}"
  :abstract: "{To our knowledge, the dataset described in this paper represents the
    largest existing repository of uncalibrated radiocarbon dates for the whole Near
    East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP).
    It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected
    comprehensively by cross-checking multiple sources (extant digital archives and
    databases, edited volumes, monographs, journals papers, archaeological excavation
    reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing
    the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape,
    Settlement and Society: Exploring Human-Environment Interaction in the Ancient
    Near East”. This is an ongoing dataset that will be updated step by step with
    newly published radiocarbon dates.}"
  :issue: "{0}"
  :langid: "{american}"
  :file: "{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog