GIN-147

radiocarbon date Radiocarbon date from Molodova 5
Record created in XRONOS on 2022-12-02 00:50:45 UTC. Last updated on 2022-12-02 00:50:45 UTC. See changelog for details.
Contributors: XRONOS development team

Measurement

Age (uncal BP)
17100
Error (±)
1400
Lab
NA
Method
NA
Sample material
charcoal
Sample taxon
NA

Calibration

Calibration curve
IntCal20 (Reimer et al. 2020)
Calibrated age (2σ, BP)
23802 - 17490

Context

Site
Molodova 5
Context
Sample position
NA
Sample coordinates
NA

Bibliographic reference Bibliographic references (18)

@misc{Vermeersch2019,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
@misc{Haesaerts P.   2010 PPP 291: 106-127,
  
}
@misc{Buvit I.  2016. QI ip,
  
}
@misc{Hoffecker J.F. 1988 BAR IS 437: 234-247.,
  
}
@misc{Trinkhaus E.  2015. Anthropologie 53: 221-231.,
  
}
@misc{Sinitsyn A.A.  2006. QI 152-153: 175-185. Douka  2017 Current Anthropology 58 Supplement 17  480-,
  
}
@misc{Lauwerier R.  2011. AK 41: 1-20.,
  
}
@misc{Oliva M. 2006.ERAUL 115: 53-65.,
  
}
@misc{Djindjian F. J. Kozlowski & M. Otte 1999. Paris. Haesaerts P.  2002. Quaternaire 14: 163-188.. Nejman L.  2011. Archaeometry 53: 1044-1066. Oliva M.. 1996. Eraul 76:: 115-129. Haesaerts P.  2013.  Radiocarbon 55: 641-647.,
  
}
@misc{Noiret P. 2007. Paleo 19: 159-180. Haesaerts P.   2010 PPP 291: 106-127,
  
}
@misc{Noiret P. 2007. Paleo 19: 159-180.,
  
}
@misc{Damblon F. & Haesaerts P. 1997. PrÔøΩhistoire europÔøΩenne 11: 255-276. Haesaerts P.  1998. Radiocarbon 40: 649 ff.. Haesaerts P.   2010 PPP 291: 106-127,
  
}
@misc{Pearce 2013,
  
}
@misc{Glassow M. A. L.R. Wilcoxon J.R. Johnson and G.P. King 1982; (need reference) 1961,
  
}
@misc{RC 22 (1980) 1062,
  
}
@misc{Kuzmin Y.V. & Orlova L.A. 1998.Radiocarbon chronology of the Siberian Paleolithic. Journal of World Prehistory 12(1): 1-53. Graf K.E. 2009. JAS 36: 694-707,
  
}
@misc{Banadora. Nigst P.  2008. Quartar 55: 9-15. Haesaerts P.  2002. Quaternaire 14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647. Teyssander N.  2018. JPA,
  
}
{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]{"bibtex_key":"Haesaerts P.   2010 PPP 291: 106-127","bibtex_type":"misc"}{"bibtex_key":"Buvit I.  2016. QI ip","bibtex_type":"misc"}{"bibtex_key":"Hoffecker J.F. 1988 BAR IS 437: 234-247.","bibtex_type":"misc"}{"bibtex_key":"Trinkhaus E.  2015. Anthropologie 53: 221-231.","bibtex_type":"misc"}{"bibtex_key":"Sinitsyn A.A.  2006. QI 152-153: 175-185. Douka  2017 Current Anthropology 58 Supplement 17  480-","bibtex_type":"misc"}{"bibtex_key":"Lauwerier R.  2011. AK 41: 1-20.","bibtex_type":"misc"}{"bibtex_key":"Oliva M. 2006.ERAUL 115: 53-65.","bibtex_type":"misc"}{"bibtex_key":"Djindjian F. J. Kozlowski & M. Otte 1999. Paris. Haesaerts P.  2002. Quaternaire 14: 163-188.. Nejman L.  2011. Archaeometry 53: 1044-1066. Oliva M.. 1996. Eraul 76:: 115-129. Haesaerts P.  2013.  Radiocarbon 55: 641-647.","bibtex_type":"misc"}{"bibtex_key":"Noiret P. 2007. Paleo 19: 159-180. Haesaerts P.   2010 PPP 291: 106-127","bibtex_type":"misc"}{"bibtex_key":"Noiret P. 2007. Paleo 19: 159-180.","bibtex_type":"misc"}{"bibtex_key":"Damblon F. & Haesaerts P. 1997. PrÔøΩhistoire europÔøΩenne 11: 255-276. Haesaerts P.  1998. Radiocarbon 40: 649 ff.. Haesaerts P.   2010 PPP 291: 106-127","bibtex_type":"misc"}{"bibtex_key":"Pearce 2013","bibtex_type":"misc"}{"bibtex_key":"Glassow M. A. L.R. Wilcoxon J.R. Johnson and G.P. King 1982; (need reference) 1961","bibtex_type":"misc"}{"bibtex_key":"RC 22 (1980) 1062","bibtex_type":"misc"}{"bibtex_key":"Kuzmin Y.V. & Orlova L.A. 1998.Radiocarbon chronology of the Siberian Paleolithic. Journal of World Prehistory 12(1): 1-53. Graf K.E. 2009. JAS 36: 694-707","bibtex_type":"misc"}{"bibtex_key":"Banadora. Nigst P.  2008. Quartar 55: 9-15. Haesaerts P.  2002. Quaternaire 14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647. Teyssander N.  2018. JPA","bibtex_type":"misc"}
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"
---
:bibtex_key: 'Haesaerts P.   2010 PPP 291: 106-127'
:bibtex_type: :misc
---
:bibtex_key: Buvit I.  2016. QI ip
:bibtex_type: :misc
---
:bibtex_key: 'Hoffecker J.F. 1988 BAR IS 437: 234-247.'
:bibtex_type: :misc
---
:bibtex_key: 'Trinkhaus E.  2015. Anthropologie 53: 221-231.'
:bibtex_type: :misc
---
:bibtex_key: 'Sinitsyn A.A.  2006. QI 152-153: 175-185. Douka  2017 Current Anthropology
  58 Supplement 17  480-'
:bibtex_type: :misc
---
:bibtex_key: 'Lauwerier R.  2011. AK 41: 1-20.'
:bibtex_type: :misc
---
:bibtex_key: 'Oliva M. 2006.ERAUL 115: 53-65.'
:bibtex_type: :misc
---
:bibtex_key: 'Djindjian F. J. Kozlowski & M. Otte 1999. Paris. Haesaerts P.  2002.
  Quaternaire 14: 163-188.. Nejman L.  2011. Archaeometry 53: 1044-1066. Oliva M..
  1996. Eraul 76:: 115-129. Haesaerts P.  2013.  Radiocarbon 55: 641-647.'
:bibtex_type: :misc
---
:bibtex_key: 'Noiret P. 2007. Paleo 19: 159-180. Haesaerts P.   2010 PPP 291: 106-127'
:bibtex_type: :misc
---
:bibtex_key: 'Noiret P. 2007. Paleo 19: 159-180.'
:bibtex_type: :misc
---
:bibtex_key: 'Damblon F. & Haesaerts P. 1997. PrÔøΩhistoire europÔøΩenne 11: 255-276.
  Haesaerts P.  1998. Radiocarbon 40: 649 ff.. Haesaerts P.   2010 PPP 291: 106-127'
:bibtex_type: :misc
---
:bibtex_key: Pearce 2013
:bibtex_type: :misc
---
:bibtex_key: Glassow M. A. L.R. Wilcoxon J.R. Johnson and G.P. King 1982; (need reference)
  1961
:bibtex_type: :misc
---
:bibtex_key: RC 22 (1980) 1062
:bibtex_type: :misc
---
:bibtex_key: 'Kuzmin Y.V. & Orlova L.A. 1998.Radiocarbon chronology of the Siberian
  Paleolithic. Journal of World Prehistory 12(1): 1-53. Graf K.E. 2009. JAS 36: 694-707'
:bibtex_type: :misc
---
:bibtex_key: 'Banadora. Nigst P.  2008. Quartar 55: 9-15. Haesaerts P.  2002. Quaternaire
  14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647. Teyssander N.  2018.
  JPA'
:bibtex_type: :misc

Changelog