A-2010
Radiocarbon date from
Zimmerman
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Measurement
- Age (uncal BP)
- 2435
- Error (±)
- 20
- Lab
- NA
- Method
- NA
- Sample material
- charred cooking residue
- Sample taxon
- NA
Calibration
- Calibration curve
- IntCal20 (Reimer et al. 2020)
- Calibrated age (2σ, BP)
- 2690 - 2641
2614 - 2596
2498 - 2360
Context
- Site
- Zimmerman
- Context
- Sample position
- NA
- Sample coordinates
- NA
Bibliographic references (7)
- No bibliographic information available. [Tachà Karine and John P. Hart. 2013. Chronometric Hygiene of Radiocarbon Databases for Early Durable Cooking Vessel Technologies in Northeastern North America. American Antiquity 78(2): 359à372 with on-line supplement.]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
- No bibliographic information available. [Trautman 1963: 72; Neuman 1967: 483; Reeves 1983: 285; Thiessen 1977: 82]
- No bibliographic information available. [Hart et al 2012 The Potential of Bulk…]
- No bibliographic information available. [Taché Karine and John P. Hart. 2013; Stewart 2018]
- No bibliographic information available. [Herbstritt 1988; Stuiver 1969: 615]
- No bibliographic information available. [Herbstritt 1988; Custer 1996; Stuiver 1969: 615]
@misc{Tachà Karine and John P. Hart. 2013. Chronometric Hygiene of Radiocarbon Databases for Early Durable Cooking Vessel Technologies in Northeastern North America. American Antiquity 78(2): 359à372 with on-line supplement.,
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
@misc{Trautman 1963: 72; Neuman 1967: 483; Reeves 1983: 285; Thiessen 1977: 82,
}
@misc{Hart et al 2012 The Potential of Bulk…,
}
@misc{Taché Karine and John P. Hart. 2013; Stewart 2018,
}
@misc{Herbstritt 1988; Stuiver 1969: 615,
}
@misc{Herbstritt 1988; Custer 1996; Stuiver 1969: 615,
}
{"bibtex_key":"Tachà Karine and John P. Hart. 2013. Chronometric Hygiene of Radiocarbon Databases for Early Durable Cooking Vessel Technologies in Northeastern North America. American Antiquity 78(2): 359à372 with on-line supplement.","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]{"bibtex_key":"Trautman 1963: 72; Neuman 1967: 483; Reeves 1983: 285; Thiessen 1977: 82","bibtex_type":"misc"}{"bibtex_key":"Hart et al 2012 The Potential of Bulk…","bibtex_type":"misc"}{"bibtex_key":"Taché Karine and John P. Hart. 2013; Stewart 2018","bibtex_type":"misc"}{"bibtex_key":"Herbstritt 1988; Stuiver 1969: 615","bibtex_type":"misc"}{"bibtex_key":"Herbstritt 1988; Custer 1996; Stuiver 1969: 615","bibtex_type":"misc"}
---
:bibtex_key: 'Tachà Karine and John P. Hart. 2013. Chronometric Hygiene of Radiocarbon
Databases for Early Durable Cooking Vessel Technologies in Northeastern North America.
American Antiquity 78(2): 359à372 with on-line supplement.'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"
---
:bibtex_key: 'Trautman 1963: 72; Neuman 1967: 483; Reeves 1983: 285; Thiessen 1977:
82'
:bibtex_type: :misc
---
:bibtex_key: Hart et al 2012 The Potential of Bulk…
:bibtex_type: :misc
---
:bibtex_key: Taché Karine and John P. Hart. 2013; Stewart 2018
:bibtex_type: :misc
---
:bibtex_key: 'Herbstritt 1988; Stuiver 1969: 615'
:bibtex_type: :misc
---
:bibtex_key: 'Herbstritt 1988; Custer 1996; Stuiver 1969: 615'
:bibtex_type: :misc