Site types
Settlement, settlement, and

Location

Coordinates (degrees)
NA
Coordinates (DMS)
NA
Country (ISO 3166)
Greece (GR)

radiocarbon date Radiocarbon dates (35)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Pta-435 G V/59, VIII3 Pit 705 Charcoal (62g) NA NA 5770±70 BP 6733–6405 cal BP Weißhaar 1989
Pta-1397 H V/64, XL Charcoal from beam (490g), NA NA 5760±45 BP 6661–6450 cal BP Weißhaar 1989
Pta-1396 H V/74, XXXVII Charred grains (450g) NA NA 5740±55 BP 6660–6405 cal BP Weißhaar 1989
Pta-1395 H V/44, XXXVIII Burnt grains (10g) NA NA 5750±40 BP 6650–6448 cal BP Weißhaar 1989
Pta-1398 H V/64, XXXVIII Charcoal from beam (600g) NA NA 5720±45 BP 6631–6405 cal BP Weißhaar 1989
Pta-981 Under House 704. H V/63, XXXII Charcoal (50g) NA NA 5670±65 BP 6627–6308 cal BP Weißhaar 1989
Pta-1404 H V/83, XXXIX Charcoal (60g) NA NA 5650±55 BP 6557–6305 cal BP Weißhaar 1989
Pta-1405 G V/80, XXI Charcoal (10g) NA NA 5630±50 BP 6499–6300 cal BP Weißhaar 1989
Pta-436 Floor of House 702. G V/100, IX2 d-440 Wood and bones (5g) NA NA 5520±80 BP 6490–6119 cal BP Weißhaar 1989
Pta-465 Pit 736 Charcoal and grains (205g) NA NA 5510±65 BP 6442–6130 cal BP Weißhaar 1989
Pta-1395 seed/fruit NA 14C 5750±40 BP 6650–6448 cal BP Weninger 2022
Pta-1396 burnt fruit? NA 14C 5740±55 BP 6660–6405 cal BP Weninger 2022
Pta-1397 charcoal NA 14C 5760±45 BP 6661–6450 cal BP Weninger 2022
Pta-1398 charcoal NA 14C 5720±45 BP 6631–6405 cal BP Weninger 2022
Pta-1404 charcoal NA 14C 5650±55 BP 6557–6305 cal BP Weninger 2022
Pta-1405 charcoal NA 14C 5630±50 BP 6499–6300 cal BP Weninger 2022
Pta-435 charcoal NA 14C 5770±70 BP 6733–6405 cal BP Weisshaar 1989 Weninger 2022
Pta-436 bone NA 14C 5520±80 BP 6490–6119 cal BP Weisshaar 1989 Weninger 2022
Pta-465 charcoal NA 14C 5510±65 BP 6442–6130 cal BP Weisshaar 1989 Weninger 2022
Pta-1395 fruit (charred) NA NA 5750±40 BP 6650–6448 cal BP Johnson1999;Weisshaar1989 Katsianis et al. 2020

typological date Typological dates (34)

Classification Estimated age References
FN NA Weißhaar 1989
LN NA Weißhaar 1989
LN NA Weißhaar 1989
LN NA Weißhaar 1989
LN NA Weißhaar 1989
LN NA Weißhaar 1989
LN NA Weißhaar 1989
FN NA Weißhaar 1989
FN NA Weißhaar 1989
FN NA Weißhaar 1989
Neolithic NA NA
Neolithic NA NA
Neolithic NA NA
Neolithic NA NA
Neolithic NA NA
Neolithic NA NA
Rachmani I NA NA
Neolithic NA Weisshaar 1989
Neolithic NA Weisshaar 1989
Neolithic NA Weisshaar 1989

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Weißhaar 1989]
  • No bibliographic information available. [Weisshaar 1989]
  • No bibliographic information available. [Johnson1999;Weisshaar1989]
  • No bibliographic information available. [Johnson1999;Manning1995;Weisshaar1989]
  • No bibliographic information available. [Johnson1999;Manning1995;Weisshaar1989;Weninger2017]
  • http://www.14sea.org/ [14SEA]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Katsianis, M., Bevan, A., Styliaras, G., & Maniatis, Y. (2020). An Aegean History and Archaeology Written through Radiocarbon Dates. Journal of Open Archaeology Data, 8(1). https://doi.org/10.5334/joad.65 [Katsianis et al. 2020]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Weißhaar 1989,
  
}
@misc{Weisshaar 1989,
  
}
@misc{Johnson1999;Weisshaar1989,
  
}
@misc{Johnson1999;Manning1995;Weisshaar1989,
  
}
@misc{Johnson1999;Manning1995;Weisshaar1989;Weninger2017,
  
}
@misc{14SEA,
  url = {http://www.14sea.org/},
  note = {Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{KatsianisEtAl2020,
  title = {An Aegean History and Archaeology Written through Radiocarbon Dates},
  author = {Katsianis, Markos and Bevan, Andrew and Styliaras, Giorgos and Maniatis, Yannis},
  year = {2020},
  month = {aug},
  journal = {Journal of Open Archaeology Data},
  volume = {8},
  number = {1},
  issn = {2049-1565},
  doi = {10.5334/joad.65},
  abstract = {The Journal of Open Archaeology Data (JOAD) features peer reviewed data papers describing archaeology datasets with high reuse potential. We work with a number of specialist and institutional data repositories to ensure that the associated data are professionally archived, preserved, and openly available. Equally importantly, the data and the papers are citable, and reuse is tracked. JOAD data papers are relatively quick to create, and provide you with a peer-reviewed publication to gain credit for your data. Submit a paper today! JOAD is indexed by the following services: Web of Science (Emerging Sources Citation Index), Scopus, European Reference Index for the Humanities and the Social Sciences, Norwegian Register for Scientific Journals, Series and Publishers, Directory of Open Access Journals (DOAJ), Chronos, Center for Open Science, OpenAIRE, ExLibris, academia.edu, Journal TOCs, CNKI, sparrho, ~CrossRef, JISC KB+, SHERPA RoMEO,  EBSCOHost, Cengage Learning, ANVUR and Google Scholar.},
  langid = {american},
  month_numeric = {8}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Weißhaar 1989","bibtex_type":"misc"}{"bibtex_key":"Weisshaar 1989","bibtex_type":"misc"}{"bibtex_key":"Johnson1999;Weisshaar1989","bibtex_type":"misc"}{"bibtex_key":"Johnson1999;Manning1995;Weisshaar1989","bibtex_type":"misc"}{"bibtex_key":"Johnson1999;Manning1995;Weisshaar1989;Weninger2017","bibtex_type":"misc"}[{"bibtex_key":"14SEA","bibtex_type":"misc","url":"{http://www.14sea.org/}","note":"{Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}"}][{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"KatsianisEtAl2020","bibtex_type":"article","title":"{An Aegean History and Archaeology Written through Radiocarbon Dates}","author":"{Katsianis, Markos and Bevan, Andrew and Styliaras, Giorgos and Maniatis, Yannis}","year":"{2020}","month":"{aug}","journal":"{Journal of Open Archaeology Data}","volume":"{8}","number":"{1}","issn":"{2049-1565}","doi":"{10.5334/joad.65}","abstract":"{The Journal of Open Archaeology Data (JOAD) features peer reviewed data papers describing archaeology datasets with high reuse potential. We work with a number of specialist and institutional data repositories to ensure that the associated data are professionally archived, preserved, and openly available. Equally importantly, the data and the papers are citable, and reuse is tracked. JOAD data papers are relatively quick to create, and provide you with a peer-reviewed publication to gain credit for your data. Submit a paper today! JOAD is indexed by the following services: Web of Science (Emerging Sources Citation Index), Scopus, European Reference Index for the Humanities and the Social Sciences, Norwegian Register for Scientific Journals, Series and Publishers, Directory of Open Access Journals (DOAJ), Chronos, Center for Open Science, OpenAIRE, ExLibris, academia.edu, Journal TOCs, CNKI, sparrho, ~CrossRef, JISC KB+, SHERPA RoMEO,  EBSCOHost, Cengage Learning, ANVUR and Google Scholar.}","langid":"{american}","month_numeric":"{8}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Weißhaar 1989
:bibtex_type: :misc
---
:bibtex_key: Weisshaar 1989
:bibtex_type: :misc
---
:bibtex_key: Johnson1999;Weisshaar1989
:bibtex_type: :misc
---
:bibtex_key: Johnson1999;Manning1995;Weisshaar1989
:bibtex_type: :misc
---
:bibtex_key: Johnson1999;Manning1995;Weisshaar1989;Weninger2017
:bibtex_type: :misc
---
- :bibtex_key: 14SEA
  :bibtex_type: :misc
  :url: "{http://www.14sea.org/}"
  :note: "{Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database
    for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}"
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: KatsianisEtAl2020
  :bibtex_type: :article
  :title: "{An Aegean History and Archaeology Written through Radiocarbon Dates}"
  :author: "{Katsianis, Markos and Bevan, Andrew and Styliaras, Giorgos and Maniatis,
    Yannis}"
  :year: "{2020}"
  :month: "{aug}"
  :journal: "{Journal of Open Archaeology Data}"
  :volume: "{8}"
  :number: "{1}"
  :issn: "{2049-1565}"
  :doi: "{10.5334/joad.65}"
  :abstract: "{The Journal of Open Archaeology Data (JOAD) features peer reviewed
    data papers describing archaeology datasets with high reuse potential. We work
    with a number of specialist and institutional data repositories to ensure that
    the associated data are professionally archived, preserved, and openly available.
    Equally importantly, the data and the papers are citable, and reuse is tracked.
    JOAD data papers are relatively quick to create, and provide you with a peer-reviewed
    publication to gain credit for your data. Submit a paper today! JOAD is indexed
    by the following services: Web of Science (Emerging Sources Citation Index), Scopus,
    European Reference Index for the Humanities and the Social Sciences, Norwegian
    Register for Scientific Journals, Series and Publishers, Directory of Open Access
    Journals (DOAJ), Chronos, Center for Open Science, OpenAIRE, ExLibris, academia.edu, Journal
    TOCs, CNKI, sparrho, ~CrossRef, JISC KB+, SHERPA RoMEO,  EBSCOHost, Cengage Learning,
    ANVUR and Google Scholar.}"
  :langid: "{american}"
  :month_numeric: "{8}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog