Site type

Location

Coordinates (degrees)
037.094° N, 008.815° W
Coordinates (DMS)
037° 05' 00" W, 008° 48' 00" N
Country (ISO 3166)
Portugal (PT)

radiocarbon date Radiocarbon dates (7)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Wk-17841 shell NA NA 24560±570 BP Carvalho 2008 Bird et al. 2022
Wk-30676 Patella colcite NA NA 24318±90 BP Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029. Tata F. 2014. JAS 42:29-41. Bird et al. 2022
Wk-32147 Acanthocardia aragonite NA NA 27141±365 BP Attenbrow 1995 2002 Bird et al. 2022
Wk-35712 shell NA NA 26026±114 BP Marreiros J. 2013. Quaternary International (2013) doi: 0.1016/j.quaint.2013.05.008. Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029 Bird et al. 2022
Wk-35713 shell NA NA 25930±122 BP Marreiros J. 2013. Quaternary International (2013) doi: 0.1016/j.quaint.2013.05.008. Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029 Bird et al. 2022
Wk-35714 shell NA NA 25964±110 BP Marreiros J. 2013. Quaternary International (2013) doi: 0.1016/j.quaint.2013.05.008. Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029 Bird et al. 2022
Wk-35717 Arbutus NA NA 28012±192 BP Balme et al. 2001 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Carvalho 2008,
  
}
@misc{Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029.  Tata F. 2014. JAS 42:29-41.,
  
}
@misc{Attenbrow 1995  2002,
  
}
@misc{Marreiros J.  2013. Quaternary International (2013) doi: 0.1016/j.quaint.2013.05.008. Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029,
  
}
@misc{Balme et al. 2001,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Carvalho 2008","bibtex_type":"misc"}{"bibtex_key":"Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029.  Tata F. 2014. JAS 42:29-41.","bibtex_type":"misc"}{"bibtex_key":"Attenbrow 1995  2002","bibtex_type":"misc"}{"bibtex_key":"Marreiros J.  2013. Quaternary International (2013) doi: 0.1016/j.quaint.2013.05.008. Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029","bibtex_type":"misc"}{"bibtex_key":"Balme et al. 2001","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Carvalho 2008
:bibtex_type: :misc
---
:bibtex_key: Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029.  Tata F.
  2014. JAS 42:29-41.
:bibtex_type: :misc
---
:bibtex_key: Attenbrow 1995  2002
:bibtex_type: :misc
---
:bibtex_key: 'Marreiros J.  2013. Quaternary International (2013) doi: 0.1016/j.quaint.2013.05.008.
  Bicho 2013. http://dx.doi.org/10.1016/j.quaint.2013.06.029'
:bibtex_type: :misc
---
:bibtex_key: Balme et al. 2001
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog