Site types
Settlement, settlement, and

Location

Coordinates (degrees)
051.437° N, 000.535° W
Coordinates (DMS)
051° 26' 00" W, 000° 32' 00" N
Country (ISO 3166)
United Kingdom (England/Wales)

radiocarbon date Radiocarbon dates (101)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
HAR-3752 wood NA NA 2970±70 BP 3350–2955 cal BP Jordan et al. 1994; Needham 1991 Bird et al. 2022
HAR-3752 rom possible vegetation clearance wood NA NA 2970±70 BP 3350–2955 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-3759 from a small horizontal log between exca vated contexts 35 and 18 in the river channel, just in front of the Late Bronze Age river frontage; probably part of a laid structure. wood NA NA 2540±70 BP 2759–2369 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-3761 from part of a laid structure wood NA NA 2530±70 BP 2755–2368 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-3762 from a small log wood NA NA 2580±60 BP 2844–2465 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4257 from a pile in the inner row, trench 2. wood NA NA 2650±70 BP 2933–2498 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4264 from a pile in the outer row, trench 2 wood NA NA 2640±70 BP 2929–2494 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4265 from a pile in the outer row, trench 2 wood NA NA 2630±60 BP 2871–2498 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4267 from a pile in the outer row, trench 1 wood NA NA 2640±70 BP 2929–2494 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4268 from a pile in the inner row, trench 1 wood NA NA 2750±70 BP 3052–2743 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4269 from a pile in the inner row, trench 1 wood NA NA 2690±70 BP 2964–2623 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4270 from a pile in the outer row, trench 2 wood NA NA 2580±80 BP 2848–2371 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4272 from a pile in the outer row, trench 2 wood NA NA 2690±80 BP 3000–2518 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4273 from a pile in the inner row, trench 2. wood NA NA 2920±90 BP 3340–2850 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4274 from a pile in the inner row, trench 2. wood NA NA 2770±90 BP 3147–2739 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4275 from a pile in the inner row, trench 2. wood NA NA 2820±70 BP 3145–2767 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4277 from a pile in the inner row, trench 1 wood NA NA 2730±70 BP 2996–2738 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4340 from a pile in the outer row, trench 2 wood NA NA 2810±90 BP 3160–2756 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4341 from a pile in the inner row, trench 2. wood NA NA 2780±80 BP 3135–2750 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014
HAR-4413 from a pile in the main row, trench 1 wood NA NA 2790±90 BP 3149–2750 cal BP Jordan et al. 1994; Needham 1991 Kneisel, Hinz, and Rinne 2014

typological date Typological dates (47)

Classification Estimated age References
Neolithic NA Hinz et al. 2012
Neolithic NA Hinz et al. 2012
Neolithic NA Hinz et al. 2012
Neolithic NA Hinz et al. 2012
Neolithic NA Hinz et al. 2012
Neolithic NA Hinz et al. 2012
Neolithic NA Hinz et al. 2012
Neolithikum NA Whittle et al. 2011, 398; Needham et al. 1991
Neolithikum NA Whittle et al. 2011, 398; Needham et al. 1991
Neolithikum NA Whittle et al. 2011, 398; Needham et al. 1991
Neolithikum NA Whittle et al. 2011, 398
Neolithikum NA Whittle et al. 2011, 398; Needham et al. 1991
Neolithikum NA Whittle et al. 2011, 398; Needham et al. 1991
Neolithikum NA Whittle et al. 2011, 398; Needham et al. 1991
Neolithikum NA Whittle et al. 2011, 398; Needham et al. 1991
Late Bronze Age NA Jordan et al. 1994; Longley 1976; Longley 1980
Late Bronze Age NA Jordan et al. 1994; Longley 1976; Longley 1980
Late Bronze Age NA Jordan et al. 1994; Needham 1991
Late Bronze Age NA Jordan et al. 1994; Needham 1991
Late Bronze Age NA Jordan et al. 1994; Needham 1991

Bibliographic reference Bibliographic references

  • Hinz, M., Furholt, M., Müller, J., Raetzel-Fabian, D., Rinne, C., Sjögren, K.-G., & Wotzka, H.-P. (2012). RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age. Journal of Neolithic Archaeology, 14, 1–4. https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116 [RADON]
  • No bibliographic information available. [Whittle et al. 2011, 398; Needham et al. 1991]
  • No bibliographic information available. [Whittle et al. 2011, 398]
  • No bibliographic information available. [Jordan et al. 1994; Longley 1976; Longley 1980]
  • No bibliographic information available. [Jordan et al. 1994; Needham 1991]
  • No bibliographic information available. [Bevan2017; EUROEVOL; RADON]
  • Bevan, A. H. (2017). Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate [Data set]. UCL Institute of Archaeology. https://doi.org/10.14324/000.ds.10025178 [Bevan2017]
  • No bibliographic information available. [British Musem XXII 55]
  • No bibliographic information available. [Carvalho 2008]
  • No bibliographic information available. [Leonardi et al. 2015 301-304 Appendix]
  • No bibliographic information available. [Whittle et al. 2011 398; Needham et al. 1991]
  • No bibliographic information available. [Barker et al. 1969 Evans 1971: 117; Evans 1994 Facorellis & Maniatis 2013: Table 10.1–2]
  • No bibliographic information available. [Sommer R. 2008. QSR 27: 714-733.]
  • No bibliographic information available. [Whittle et al. 2011 398]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Hinz, M., Furholt, M., Müller, J., Raetzel-Fabian, D., Rinne, C., Sjögren, K.-G., & Wotzka, H.-P. (2012). RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age. Journal of Neolithic Archaeology, 14, 1–4. https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116 [RADON]
  • Kneisel, J., Hinz, M., & Rinne, C. (2014). RADON-B – Radiocarbon Dates Online (Version 2014). Database for European 14C Dates for the Bronze and Early Iron Age [Data set]. https://radon-b.ufg.uni-kiel.de [RADON-B]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@article{RADON,
  title = {RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.},
  author = {Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter},
  date = {2012},
  journaltitle = {Journal of Neolithic Archaeology},
  volume = {14},
  pages = {1–4},
  url = {https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116},
  abstract = {In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}
}
@misc{Whittle et al. 2011, 398; Needham et al. 1991,
  
}
@misc{Whittle et al. 2011, 398,
  
}
@misc{Jordan et al. 1994; Longley 1976; Longley 1980,
  
}
@misc{Jordan et al. 1994; Needham 1991,
  
}
@misc{Bevan2017; EUROEVOL; RADON,
  
}
@dataset{Bevan2017,
  title = {Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate},
  author = {Bevan, A. H.},
  date = {2017-10-20},
  publisher = {UCL Institute of Archaeology},
  location = {London, UK},
  doi = {10.14324/000.ds.10025178},
  url = {https://discovery.ucl.ac.uk/id/eprint/10025178/},
  urldate = {2023-09-07},
  langid = {english}
}
@misc{British Musem XXII 55,
  
}
@misc{Carvalho 2008,
  
}
@misc{Leonardi et al. 2015 301-304 Appendix,
  
}
@misc{Whittle et al. 2011 398; Needham et al. 1991,
  
}
@misc{Barker et al. 1969 Evans 1971: 117; Evans 1994 Facorellis & Maniatis 2013: Table 10.1–2,
  
}
@misc{Sommer R.  2008. QSR 27: 714-733.,
  
}
@misc{Whittle et al. 2011 398,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{RADON,
  title = {RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.},
  author = {Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter},
  date = {2012},
  journaltitle = {Journal of Neolithic Archaeology},
  volume = {14},
  pages = {1–4},
  url = {https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116},
  abstract = {In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}
}
@dataset{RADON-B,
  title = {RADON-B – Radiocarbon Dates Online (Version 2014).  Database for European 14C Dates for the Bronze and Early Iron Age},
  author = {Kneisel, Jutta and Hinz, Martin and Rinne, Christophe},
  date = {2014},
  url = {https://radon-b.ufg.uni-kiel.de},
  abstract = {The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
[{"bibtex_key":"RADON","bibtex_type":"article","title":"{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.}","author":"{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}","date":"{2012}","journaltitle":"{Journal of Neolithic Archaeology}","volume":"{14}","pages":"{1–4}","url":"{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}","abstract":"{In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}"}]{"bibtex_key":"Whittle et al. 2011, 398; Needham et al. 1991","bibtex_type":"misc"}{"bibtex_key":"Whittle et al. 2011, 398","bibtex_type":"misc"}{"bibtex_key":"Jordan et al. 1994; Longley 1976; Longley 1980","bibtex_type":"misc"}{"bibtex_key":"Jordan et al. 1994; Needham 1991","bibtex_type":"misc"}{"bibtex_key":"Bevan2017; EUROEVOL; RADON","bibtex_type":"misc"}[{"bibtex_key":"Bevan2017","bibtex_type":"dataset","title":"{Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate}","author":"{Bevan, A. H.}","date":"{2017-10-20}","publisher":"{UCL Institute of Archaeology}","location":"{London, UK}","doi":"{10.14324/000.ds.10025178}","url":"{https://discovery.ucl.ac.uk/id/eprint/10025178/}","urldate":"{2023-09-07}","langid":"{english}"}]{"bibtex_key":"British Musem XXII 55","bibtex_type":"misc"}{"bibtex_key":"Carvalho 2008","bibtex_type":"misc"}{"bibtex_key":"Leonardi et al. 2015 301-304 Appendix","bibtex_type":"misc"}{"bibtex_key":"Whittle et al. 2011 398; Needham et al. 1991","bibtex_type":"misc"}{"bibtex_key":"Barker et al. 1969 Evans 1971: 117; Evans 1994 Facorellis & Maniatis 2013: Table 10.1–2","bibtex_type":"misc"}{"bibtex_key":"Sommer R.  2008. QSR 27: 714-733.","bibtex_type":"misc"}{"bibtex_key":"Whittle et al. 2011 398","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"RADON","bibtex_type":"article","title":"{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.}","author":"{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}","date":"{2012}","journaltitle":"{Journal of Neolithic Archaeology}","volume":"{14}","pages":"{1–4}","url":"{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}","abstract":"{In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}"}][{"bibtex_key":"RADON-B","bibtex_type":"dataset","title":"{RADON-B – Radiocarbon Dates Online (Version 2014).  Database for European 14C Dates for the Bronze and Early Iron Age}","author":"{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}","date":"{2014}","url":"{https://radon-b.ufg.uni-kiel.de}","abstract":"{The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
- :bibtex_key: RADON
  :bibtex_type: :article
  :title: "{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C
    Dates for the Neolithic and the Early Bronze Age.}"
  :author: "{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian,
    Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}"
  :date: "{2012}"
  :journaltitle: "{Journal of Neolithic Archaeology}"
  :volume: "{14}"
  :pages: "{1–4}"
  :url: "{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}"
  :abstract: "{In order to understand the dynamics of cultural phenomena, scientific
    dating in archaeology is an increasingly indispensable tool. Only by dating independently
    of typology is it possible to understand typological development itself (Müller
    2004). Here radiometric dating methods, especially those based on carbon isotopy,
    still play the most important role. For evaluations exceeding the intra-site level,
    it is particularly important that such data is collected in large numbers and
    that the dates are easily accessible. Also, new statistical analyses, such as
    sequential calibration based on Bayesian methods, do not require single dates,
    but rather demand a greater number. By their combination significantly more elaborate
    results can be achieved compared to the results from conventional evaluation (e.
    g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This
    approach continues to be applied in the international research community, which
    we welcome as a highly positive development. The radiocarbon database RADON has
    been committed to this principle for more than 12 years. In this database 14C
    data – primarily of the Neolithic of Central Europe and Southern Scandinavia –
    is collected and successively augmented.}"
---
:bibtex_key: Whittle et al. 2011, 398; Needham et al. 1991
:bibtex_type: :misc
---
:bibtex_key: Whittle et al. 2011, 398
:bibtex_type: :misc
---
:bibtex_key: Jordan et al. 1994; Longley 1976; Longley 1980
:bibtex_type: :misc
---
:bibtex_key: Jordan et al. 1994; Needham 1991
:bibtex_type: :misc
---
:bibtex_key: Bevan2017; EUROEVOL; RADON
:bibtex_type: :misc
---
- :bibtex_key: Bevan2017
  :bibtex_type: :dataset
  :title: "{Radiocarbon Dataset and Analysis from Bevan, A., Colledge, S., Fuller,
    D., Fyfe, R., Shennan, S. and C. Stevens 2017. Holocene Fluctuations in Human
    Population Demonstrate Repeated Links to Food Production and Climate}"
  :author: "{Bevan, A. H.}"
  :date: "{2017-10-20}"
  :publisher: "{UCL Institute of Archaeology}"
  :location: "{London, UK}"
  :doi: "{10.14324/000.ds.10025178}"
  :url: "{https://discovery.ucl.ac.uk/id/eprint/10025178/}"
  :urldate: "{2023-09-07}"
  :langid: "{english}"
---
:bibtex_key: British Musem XXII 55
:bibtex_type: :misc
---
:bibtex_key: Carvalho 2008
:bibtex_type: :misc
---
:bibtex_key: Leonardi et al. 2015 301-304 Appendix
:bibtex_type: :misc
---
:bibtex_key: Whittle et al. 2011 398; Needham et al. 1991
:bibtex_type: :misc
---
:bibtex_key: 'Barker et al. 1969 Evans 1971: 117; Evans 1994 Facorellis & Maniatis
  2013: Table 10.1–2'
:bibtex_type: :misc
---
:bibtex_key: 'Sommer R.  2008. QSR 27: 714-733.'
:bibtex_type: :misc
---
:bibtex_key: Whittle et al. 2011 398
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: RADON
  :bibtex_type: :article
  :title: "{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C
    Dates for the Neolithic and the Early Bronze Age.}"
  :author: "{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian,
    Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}"
  :date: "{2012}"
  :journaltitle: "{Journal of Neolithic Archaeology}"
  :volume: "{14}"
  :pages: "{1–4}"
  :url: "{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}"
  :abstract: "{In order to understand the dynamics of cultural phenomena, scientific
    dating in archaeology is an increasingly indispensable tool. Only by dating independently
    of typology is it possible to understand typological development itself (Müller
    2004). Here radiometric dating methods, especially those based on carbon isotopy,
    still play the most important role. For evaluations exceeding the intra-site level,
    it is particularly important that such data is collected in large numbers and
    that the dates are easily accessible. Also, new statistical analyses, such as
    sequential calibration based on Bayesian methods, do not require single dates,
    but rather demand a greater number. By their combination significantly more elaborate
    results can be achieved compared to the results from conventional evaluation (e.
    g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This
    approach continues to be applied in the international research community, which
    we welcome as a highly positive development. The radiocarbon database RADON has
    been committed to this principle for more than 12 years. In this database 14C
    data – primarily of the Neolithic of Central Europe and Southern Scandinavia –
    is collected and successively augmented.}"
---
- :bibtex_key: RADON-B
  :bibtex_type: :dataset
  :title: "{RADON-B – Radiocarbon Dates Online (Version 2014).  Database for European
    14C Dates for the Bronze and Early Iron Age}"
  :author: "{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}"
  :date: "{2014}"
  :url: "{https://radon-b.ufg.uni-kiel.de}"
  :abstract: "{The database provides a quick overview of 14C dates from Europe. The
    time frame was limited to the Bronze and Early Iron Ages and covers the period
    from 2300 BC to 500 BC. The database can be searched by geographic or chronological
    factors, but also according to the nature of the sample material, the sites or
    features. The data and related information were taken from the literature cited
    in each case, and due to the timing of phases and culture assignment, are subject
    to change. We therefore assume no responsibility for the accuracy of source data.}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog