Paul Mason
Archaeological site
in Canada
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Location
Classification | Estimated age | References |
---|
Bibliographic references
- No bibliographic information available. [Coupland 1988; Hobson and Nelson 1983 1984]
- No bibliographic information available. [Lowdon et al. 1972; Wilmeth 1978a; Chisholm 1986; Rutherford et al. 1979 1981; Severs 1974a 1974c]
- No bibliographic information available. [Nelson and Hobson 1982; Richards and Rousseau 1987; Matson et al. 1980; Magne 1983-007 and 1984-011]
- No bibliographic information available. [Ball 1979 1981; Wilmeth 1978a; Mitchell 1971a; Nelson and Hobson 1982; Brolly 1997; Burley 1980; Chisholm 1986; Ham 1981; Matson and Coupland 1995; Matson et al. 1980]
- No bibliographic information available. [Hobson and Nelson 1983; Fladmark 1985]
- No bibliographic information available. [Ziolkowski et al 1994]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Coupland 1988; Hobson and Nelson 1983 1984,
}
@misc{Lowdon et al. 1972; Wilmeth 1978a; Chisholm 1986; Rutherford et al. 1979 1981; Severs 1974a 1974c,
}
@misc{Nelson and Hobson 1982; Richards and Rousseau 1987; Matson et al. 1980; Magne 1983-007 and 1984-011,
}
@misc{Ball 1979 1981; Wilmeth 1978a; Mitchell 1971a; Nelson and Hobson 1982; Brolly 1997; Burley 1980; Chisholm 1986; Ham 1981; Matson and Coupland 1995; Matson et al. 1980,
}
@misc{Hobson and Nelson 1983; Fladmark 1985,
}
@misc{Ziolkowski et al 1994,
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
{"bibtex_key":"Coupland 1988; Hobson and Nelson 1983 1984","bibtex_type":"misc"}{"bibtex_key":"Lowdon et al. 1972; Wilmeth 1978a; Chisholm 1986; Rutherford et al. 1979 1981; Severs 1974a 1974c","bibtex_type":"misc"}{"bibtex_key":"Nelson and Hobson 1982; Richards and Rousseau 1987; Matson et al. 1980; Magne 1983-007 and 1984-011","bibtex_type":"misc"}{"bibtex_key":"Ball 1979 1981; Wilmeth 1978a; Mitchell 1971a; Nelson and Hobson 1982; Brolly 1997; Burley 1980; Chisholm 1986; Ham 1981; Matson and Coupland 1995; Matson et al. 1980","bibtex_type":"misc"}{"bibtex_key":"Hobson and Nelson 1983; Fladmark 1985","bibtex_type":"misc"}{"bibtex_key":"Ziolkowski et al 1994","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Coupland 1988; Hobson and Nelson 1983 1984
:bibtex_type: :misc
---
:bibtex_key: Lowdon et al. 1972; Wilmeth 1978a; Chisholm 1986; Rutherford et al. 1979
1981; Severs 1974a 1974c
:bibtex_type: :misc
---
:bibtex_key: Nelson and Hobson 1982; Richards and Rousseau 1987; Matson et al. 1980;
Magne 1983-007 and 1984-011
:bibtex_type: :misc
---
:bibtex_key: Ball 1979 1981; Wilmeth 1978a; Mitchell 1971a; Nelson and Hobson 1982; Brolly
1997; Burley 1980; Chisholm 1986; Ham 1981; Matson and Coupland 1995; Matson
et al. 1980
:bibtex_type: :misc
---
:bibtex_key: Hobson and Nelson 1983; Fladmark 1985
:bibtex_type: :misc
---
:bibtex_key: Ziolkowski et al 1994
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"