Site type

Location

Coordinates (degrees)
043.464° N, 076.209° W
Coordinates (DMS)
043° 27' 00" W, 076° 12' 00" N
Country (ISO 3166)
United States (US)

radiocarbon date Radiocarbon dates (12)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
ISGS-A190 POTTERYRESIDUE NA AMS 1425±45 BP Hart et al (2003) Bird et al. 2022
ISGS-A191 POTTERYRESIDUE NA AMS 1228±42 BP Hart et al. (2003) Bird et al. 2022
ISGS-A194 POTTERYRESIDUE NA AMS 1648±47 BP Hart et al. (2003) Bird et al. 2022
ISGS-A195 POTTERYRESIDUE NA AMS 1450±43 BP Hart et al. (2003) Bird et al. 2022
ISGS-A453 POTTERYRESIDUE NA AMS 1635±35 BP Hart and Brumbach (2005) Bird et al. 2022
ISGS-A454 POTTERYRESIDUE NA AMS 1695±35 BP Hart and Brumbach (2005) Bird et al. 2022
ISGS-A509 POTTERYRESIDUE NA AMS 1115±30 BP Hart and Lovis 2011 Bird et al. 2022
ISGS-A520 CHARCOAL NA AMS 805±40 BP Hart and Brumbach 2005 Bird et al. 2022
ISGS-A521 CHARCOAL NA AMS 885±40 BP Hart and Brumbach 2005 Bird et al. 2022
ISGS-A745 POTTERYRESIDUE NA AMS 1575±30 BP Hart and Lovis (2007) Bird et al. 2022
ISGS-A751 POTTERYRESIDUE NA AMS 1115±30 BP Hart and Lovis (2007) Bird et al. 2022
Y-1172 CHARCOAL NA RADIOMETRIC 1210±100 BP Ritchie 1969; Hart et al. 2003; Stuiver et al. 1963: 332 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Hart et al (2003),
  
}
@misc{Hart et al. (2003),
  
}
@misc{Hart and Brumbach (2005),
  
}
@misc{Hart and Lovis 2011,
  
}
@misc{Hart and Brumbach 2005,
  
}
@misc{Hart and Lovis (2007),
  
}
@misc{Ritchie 1969; Hart et al. 2003; Stuiver et al. 1963: 332,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Hart et al (2003)","bibtex_type":"misc"}{"bibtex_key":"Hart et al. (2003)","bibtex_type":"misc"}{"bibtex_key":"Hart and Brumbach (2005)","bibtex_type":"misc"}{"bibtex_key":"Hart and Lovis 2011","bibtex_type":"misc"}{"bibtex_key":"Hart and Brumbach 2005","bibtex_type":"misc"}{"bibtex_key":"Hart and Lovis (2007)","bibtex_type":"misc"}{"bibtex_key":"Ritchie 1969; Hart et al. 2003; Stuiver et al. 1963: 332","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Hart et al (2003)
:bibtex_type: :misc
---
:bibtex_key: Hart et al. (2003)
:bibtex_type: :misc
---
:bibtex_key: Hart and Brumbach (2005)
:bibtex_type: :misc
---
:bibtex_key: Hart and Lovis 2011
:bibtex_type: :misc
---
:bibtex_key: Hart and Brumbach 2005
:bibtex_type: :misc
---
:bibtex_key: Hart and Lovis (2007)
:bibtex_type: :misc
---
:bibtex_key: 'Ritchie 1969; Hart et al. 2003; Stuiver et al. 1963: 332'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog