Site type

Location

Coordinates (degrees)
051.378° N, 084.680° E
Coordinates (DMS)
051° 22' 00" E, 084° 40' 00" N
Country (ISO 3166)
Russian Federation (RU)

radiocarbon date Radiocarbon dates (9)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
IGAN-837 charcoal NA NA 29900±2070 BP 38925–30339 cal BP Dietrich 2011 Bird et al. 2022
SOAN-2515 charcoal NA NA 31410±1160 BP 39075–33680 cal BP Vermeersch 2020 Bird et al. 2022
SOAN-2614 bone NA NA 28700±850 BP 34525–31207 cal BP Kuzmin Y.V. & Orlova L.A. 1998. Radiocarbon chronology of the SiberianPaleolithic. Journal of World Prehistory 12(1): 1-53. Kuzmin Y.V. 2003. The Review of Archaeology 24: 37-45. Kuzmin Y. Archaeol Anthropol Sci (2018) 10:111-124 Bird et al. 2022
SOAN-2869 charcoal NA NA 31345±1275 BP 39160–33231 cal BP Lbova 1994 Bryansky paleolithic complex Novosibirsk; Buvit I. 2016. QI ip Zwyns N.e.a Archaeological Research in Asia 177 (2019) 24-49. Bird et al. 2022
SOAN-3260 charcoal NA NA 30460±2035 BP 39390–31008 cal BP Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53. Bird et al. 2022
SOAN-3261 charcoal NA NA 26305±280 BP 31030–30095 cal BP Vermeersch 2020 Bird et al. 2022
SOAN-3356G or 3357 charcoal NA NA 26920±310 BP 31561–30395 cal BP Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53. Goebel T. 2004. In: Brantingham P. The Early Upper Palaeolithic beyond Western Europe: 1062-195. Bird et al. 2022
SOAN-3357 charcoal NA NA 26920±310 BP 31561–30395 cal BP Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53. Derevianko A. 2005. Taipei Papers volume 3. Bird et al. 2022
SOAN-4175 NA NA 25690±180 BP 30302–29337 cal BP Vermeersch 2020 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Dietrich 2011,
  
}
@article{Vermeersch2020,
  title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
  author = {Vermeersch, Pierre M},
  year = {2020},
  month = {aug},
  journal = {Data Brief},
  volume = {31},
  pages = {105793},
  issn = {2352-3409},
  doi = {10.1016/j.dib.2020.105793},
  abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
  month_numeric = {8}
}
@misc{Kuzmin Y.V. & Orlova L.A. 1998. Radiocarbon chronology of the SiberianPaleolithic. Journal of World Prehistory 12(1): 1-53. Kuzmin Y.V. 2003. The Review of Archaeology 24: 37-45.  Kuzmin Y. Archaeol Anthropol Sci (2018) 10:111-124,
  
}
@misc{Lbova 1994 Bryansky paleolithic complex Novosibirsk; Buvit I.  2016. QI ip Zwyns N.e.a Archaeological Research in Asia 177 (2019) 24-49.,
  
}
@misc{Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53.,
  
}
@misc{Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53. Goebel  T. 2004. In: Brantingham P. The Early Upper Palaeolithic beyond Western Europe: 1062-195.,
  
}
@misc{Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53. Derevianko A.  2005. Taipei Papers volume 3.,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Dietrich 2011","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"Kuzmin Y.V. & Orlova L.A. 1998. Radiocarbon chronology of the SiberianPaleolithic. Journal of World Prehistory 12(1): 1-53. Kuzmin Y.V. 2003. The Review of Archaeology 24: 37-45.  Kuzmin Y. Archaeol Anthropol Sci (2018) 10:111-124","bibtex_type":"misc"}{"bibtex_key":"Lbova 1994 Bryansky paleolithic complex Novosibirsk; Buvit I.  2016. QI ip Zwyns N.e.a Archaeological Research in Asia 177 (2019) 24-49.","bibtex_type":"misc"}{"bibtex_key":"Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53.","bibtex_type":"misc"}{"bibtex_key":"Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53. Goebel  T. 2004. In: Brantingham P. The Early Upper Palaeolithic beyond Western Europe: 1062-195.","bibtex_type":"misc"}{"bibtex_key":"Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53. Derevianko A.  2005. Taipei Papers volume 3.","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Dietrich 2011
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
  :bibtex_type: :article
  :title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
    of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
  :author: "{Vermeersch, Pierre M}"
  :year: "{2020}"
  :month: "{aug}"
  :journal: "{Data Brief}"
  :volume: "{31}"
  :pages: "{105793}"
  :issn: "{2352-3409}"
  :doi: "{10.1016/j.dib.2020.105793}"
  :abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
    Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
    was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
    humaine, Paris). One of the objectives was building a database of the human occupation
    of Europe during this period. The database has been enlarged and now includes
    Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
    conditions and the available chronometric dating. From version 14 on, only sites
    with chronometric data were included. In this database we have collected the available
    radiometric data from literature and from other more restricted databases. We
    try to incorporate newly published chronometric dates, collected from all kind
    of available publications. Only dates older than 9500 uncalibrated BP, correlated
    with a "cultural" level obtained by scientific excavations of European (Asian
    Russian Federation included) Palaeolithic sites, have been included. The dates
    are complemented with information related to cultural remains, stratigraphic,
    sedimentologic and palaeontologic information within a Microsoft Access database.
    For colleagues mainly interested in a list of all chronometric dates an Microsoft
    Excel list (with no details) is available (Tab. 1). A file, containing all sites
    with known coordinates, that can be opened for immediate use in Google Earth is
    available as a *.kmz file. It will give the possibility to introduce (by file
    open) in Google Earth the whole site list in "My Places". The database, version
    27 (first version was available in 2002), contains now 13,202 site forms, (most
    of them with their geographical coordinates), comprising 17,022 radiometric data:
    Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
    and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
    are conventional dates BP. This improved version 27 replaces the older version
    26.}'
  :month_numeric: "{8}"
---
:bibtex_key: 'Kuzmin Y.V. & Orlova L.A. 1998. Radiocarbon chronology of the SiberianPaleolithic.
  Journal of World Prehistory 12(1): 1-53. Kuzmin Y.V. 2003. The Review of Archaeology
  24: 37-45.  Kuzmin Y. Archaeol Anthropol Sci (2018) 10:111-124'
:bibtex_type: :misc
---
:bibtex_key: Lbova 1994 Bryansky paleolithic complex Novosibirsk; Buvit I.  2016.
  QI ip Zwyns N.e.a Archaeological Research in Asia 177 (2019) 24-49.
:bibtex_type: :misc
---
:bibtex_key: 'Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53.'
:bibtex_type: :misc
---
:bibtex_key: 'Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53.
  Goebel  T. 2004. In: Brantingham P. The Early Upper Palaeolithic beyond Western
  Europe: 1062-195.'
:bibtex_type: :misc
---
:bibtex_key: 'Kuzmin Y.V. & Orlova L.A. 1998. Journal of World Prehistory 12(1): 1-53.
  Derevianko A.  2005. Taipei Papers volume 3.'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog