Site type

Location

Coordinates (degrees)
048.554° N, 010.146° E
Coordinates (DMS)
048° 33' 00" E, 010° 08' 00" N
Country (ISO 3166)
Germany (DE)

radiocarbon date Radiocarbon dates (11)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
H-4049-3356 bone NA NA 26133±376 BP 31104–29740 cal BP StreetMaspects of Late Upper Palaeolithic settlement and chronology in northern Central Europe Bird et al. 2022
H-4057-3354 bone NA NA 12980±103 BP 15808–15240 cal BP Conard N.J. 2003. JHE 44: 331-371. Bird et al. 2022
H-4058-3355 bone NA NA 20400±220 BP 25103–23965 cal BP Conard N.J. 2003. JHE 44: 331-371. Bird et al. 2022
H-4058-3526 bone NA NA 23440±290 BP 28240–27199 cal BP Conard N.J. 2003. JHE 44: 331-371. Bird et al. 2022
KIA-8952 bone NA NA 30130±260 BP 35150–34212 cal BP Conard N.J. 2003. JHE 44: 331-371. Bird et al. 2022
KIA-8953 bone NA NA 31530±230 BP 36254–35430 cal BP Conard N.J. 2003. JHE 44: 331-371. Bird et al. 2022
KIA-8954 bone NA NA 44390±990 BP 48520–45013 cal BP Conard N.J. 2003. JHE 44: 331-371. Bird et al. 2022
KIA-8955 bone NA NA 46380±1360 BP 52125–46047 cal BP Conard N.J. 2003. JHE 44: 331-371. Bird et al. 2022
KIA-8956 bone NA NA 20990±120 BP 25650–25065 cal BP Conard N.J 2003. JHE 44: 3321-371. Conard N.J. 2004. Mitteilungen des Gesellschaft fur Urgeschichte 13: 29-59. Boger U. Mitteilungen der Gesellschaft fÔøΩr Urgeschichte ÔøΩ 23 (2014) 57 Bird et al. 2022
Lyon-377 bone NA NA 24220±400 BP 29192–27695 cal BP Capuzzo, Boaretto, and Barceló 2014 Bird et al. 2022
W-279 bone NA NA 24000±3000 BP 34090–22438 cal BP Harington 2003: 351; Broecker et al. 1956: 157; Spiker et al. 1978: 149; Faunmap 4430 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{StreetMaspects of Late Upper Palaeolithic settlement and chronology in northern Central Europe,
  
}
@misc{Conard N.J.  2003. JHE 44: 331-371.,
  
}
@misc{Conard N.J 2003. JHE 44: 3321-371. Conard N.J. 2004. Mitteilungen des Gesellschaft fur Urgeschichte 13: 29-59. Boger U.  Mitteilungen der Gesellschaft fÔøΩr Urgeschichte ÔøΩ 23 (2014) 57,
  
}
@article{CapuzzoEtAl2014,
  title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
  shorttitle = {EUBAR},
  author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
  year = {2014},
  month = {jan},
  journal = {Radiocarbon},
  volume = {56},
  number = {2},
  pages = {851–869},
  issn = {0033-8222, 1945-5755},
  doi = {10.2458/56.17453},
  abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
  langid = {english},
  month_numeric = {1}
}
@misc{Harington 2003: 351; Broecker et al. 1956: 157; Spiker et al. 1978: 149; Faunmap 4430,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"StreetMaspects of Late Upper Palaeolithic settlement and chronology in northern Central Europe","bibtex_type":"misc"}{"bibtex_key":"Conard N.J.  2003. JHE 44: 331-371.","bibtex_type":"misc"}{"bibtex_key":"Conard N.J 2003. JHE 44: 3321-371. Conard N.J. 2004. Mitteilungen des Gesellschaft fur Urgeschichte 13: 29-59. Boger U.  Mitteilungen der Gesellschaft fÔøΩr Urgeschichte ÔøΩ 23 (2014) 57","bibtex_type":"misc"}[{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}]{"bibtex_key":"Harington 2003: 351; Broecker et al. 1956: 157; Spiker et al. 1978: 149; Faunmap 4430","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: StreetMaspects of Late Upper Palaeolithic settlement and chronology in
  northern Central Europe
:bibtex_type: :misc
---
:bibtex_key: 'Conard N.J.  2003. JHE 44: 331-371.'
:bibtex_type: :misc
---
:bibtex_key: 'Conard N.J 2003. JHE 44: 3321-371. Conard N.J. 2004. Mitteilungen des
  Gesellschaft fur Urgeschichte 13: 29-59. Boger U.  Mitteilungen der Gesellschaft
  fÔøΩr Urgeschichte ÔøΩ 23 (2014) 57'
:bibtex_type: :misc
---
- :bibtex_key: CapuzzoEtAl2014
  :bibtex_type: :article
  :title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
    Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
    France}"
  :shorttitle: "{EUBAR}"
  :author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
  :year: "{2014}"
  :month: "{jan}"
  :journal: "{Radiocarbon}"
  :volume: "{56}"
  :number: "{2}"
  :pages: "{851–869}"
  :issn: "{0033-8222, 1945-5755}"
  :doi: "{10.2458/56.17453}"
  :abstract: "{The chronological framework of European protohistory is mostly a relative
    chronology based on typology and stratigraphic data. Synchronization of different
    time periods suffers from a lack of absolute dates; therefore, disagreements between
    different chronological schemes are difficult to reconcile. An alternative approach
    was applied in this study to build a more precise and accurate absolute chronology.
    To the best of our knowledge, we have collected all the published 14C dates for
    the archaeological sites in the region from the Ebro River (Spain) to the Middle
    Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
    information associated with the 14C dates was organized in a database that totaled
    more than 1600 14C dates. In order to build an accurate and precise chronology,
    quality selection rules have been applied to the 14C dates based on both archaeological
    context and analytical quality. Using the OxCal software and Bayesian analysis,
    several 14C time sequences were created following the archaeological data and
    different possible scenarios were tested in northern Italy and southern France.}"
  :langid: "{english}"
  :month_numeric: "{1}"
---
:bibtex_key: 'Harington 2003: 351; Broecker et al. 1956: 157; Spiker et al. 1978:
  149; Faunmap 4430'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog