Site type

Location

Coordinates (degrees)
027.662° N, 030.906° E
Coordinates (DMS)
027° 39' 00" E, 030° 54' 00" N
Country (ISO 3166)
Egypt (EG)

radiocarbon date Radiocarbon dates (44)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
OxA-18057 plant NA 14C 3082±29 BP Bronk-Ramsey 2010 Weninger 2022
OxA-18407 plant NA 14C 3096±28 BP Bronk-Ramsey 2010 Weninger 2022
OxA-18412 plant NA 14C 3064±28 BP Bronk-Ramsey 2010 Weninger 2022
OxA-18512 plant NA 14C 3051±27 BP Bronk-Ramsey 2010 Weninger 2022
OxA-18953 seed/fruit Triticum 14C 3092±27 BP Bronk-Ramsey 2010 Weninger 2022
OxA-18954 seed/fruit coriarum 14C 2976±28 BP Bronk-Ramsey 2010 Weninger 2022
OxA-18955 plant Balanites aegyptiaca 14C 3115±30 BP Bronk-Ramsey 2010 Weninger 2022
OxA-18956 seed/fruit Hordeum 14C 3028±27 BP Bronk-Ramsey 2010 Weninger 2022
OxA-19004 textile Linum 14C 2862±26 BP Bronk-Ramsey 2010 Weninger 2022
OxA-19263 textile Linum 14C 2798±27 BP Bronk-Ramsey 2010 Weninger 2022
OxA-20482 textile Linum 14C 2787±31 BP Bronk-Ramsey 2010 Weninger 2022
Q-2401 charcoal NA 14C 3030±35 BP Switsur(1984) Weninger 2022
Q-2402 charcoal NA 14C 3055±35 BP Switsur(1984) Weninger 2022
Q-2403 charcoal NA 14C 3050±35 BP Switsur(1984) Weninger 2022
Q-2404 charcoal NA 14C 3025±35 BP Switsur(1984) Weninger 2022
Q-2405 charcoal NA 14C 3088±35 BP Switsur(1984) Weninger 2022
VERA-4685 plant Cyperus 14C 3096±34 BP Bronk-Ramsey 2010 Weninger 2022
VERA-4685B plant Cyperus 14C 3116±35 BP Bronk-Ramsey 2010 Weninger 2022
VERA-4686 plant Linum 14C 2847±36 BP Bronk-Ramsey 2010 Weninger 2022
VERA-4686B plant Linum 14C 2918±30 BP Bronk-Ramsey 2010 Weninger 2022

typological date Typological dates (44)

Classification Estimated age References
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA
Dynastic NA Bronk-Ramsey 2010
Dynasty 18 NA NA

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Bronk-Ramsey 2010]
  • No bibliographic information available. [Switsur(1984)]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Bronk-Ramsey 2010,
  
}
@misc{Switsur(1984),
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Bronk-Ramsey 2010","bibtex_type":"misc"}{"bibtex_key":"Switsur(1984)","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Bronk-Ramsey 2010
:bibtex_type: :misc
---
:bibtex_key: Switsur(1984)
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog