Site type

Location

Coordinates (degrees)
045.003° N, 034.404° E
Coordinates (DMS)
045° 00' 00" E, 034° 24' 00" N
Country (ISO 3166)
Ukraine (UA)

radiocarbon date Radiocarbon dates (5)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
GifA-80181/SacA-12260 bone NA NA 34910±950 BP 41705–37530 cal BP Djindjan 2000. In Hunters of the Golden Age. Pigeaud R. 2002. L'Anthropologie 106: 445-. Bignon-Lau O 2013. QI in press. Lacarriere J. 2015. QI 359-360: 520-534. Bird et al. 2022
OXA-6674 bone NA NA 28520±460 BP 33980–31652 cal BP Kiel DB 2964 Bird et al. 2022
OXA-6869 bone NA NA 32200±1500 BP 40318–33945 cal BP zie cambridge Bird et al. 2022
OxA-6672 bone NA NA 32350±700 BP 38942–35395 cal BP L. Iakovleva Recherches sur le PalÔøΩolithique supÔøΩrieur de l'Ukraine (1997-2000) ERAUL 35-43. Marks A & Monigal 2004. In Brantingham P. The early Upper Palaeolithic beyond Western Europe: 64-79. Bird et al. 2022
OxA-6673 bone NA NA 28840±460 BP 34220–31930 cal BP L. Iakovleva Recherches sur le PalÔøΩolithique supÔøΩrieur de l'Ukraine (1997-2000) ERAUL 35-43. Marks A & Monigal 2004. In Brantingham P. The early Upper Palaeolithic beyond Western Europe: 64-79. Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Djindjan 2000. In Hunters of the Golden Age. Pigeaud R. 2002. L'Anthropologie 106: 445-. Bignon-Lau O 2013. QI in press. Lacarriere J.  2015. QI 359-360: 520-534.,
  
}
@misc{Kiel DB 2964,
  
}
@misc{zie cambridge,
  
}
@misc{L. Iakovleva Recherches sur le PalÔøΩolithique supÔøΩrieur de l'Ukraine (1997-2000) ERAUL 35-43. Marks A & Monigal 2004.  In  Brantingham P.  The early Upper Palaeolithic beyond Western Europe: 64-79.,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Djindjan 2000. In Hunters of the Golden Age. Pigeaud R. 2002. L'Anthropologie 106: 445-. Bignon-Lau O 2013. QI in press. Lacarriere J.  2015. QI 359-360: 520-534.","bibtex_type":"misc"}{"bibtex_key":"Kiel DB 2964","bibtex_type":"misc"}{"bibtex_key":"zie cambridge","bibtex_type":"misc"}{"bibtex_key":"L. Iakovleva Recherches sur le PalÔøΩolithique supÔøΩrieur de l'Ukraine (1997-2000) ERAUL 35-43. Marks A & Monigal 2004.  In  Brantingham P.  The early Upper Palaeolithic beyond Western Europe: 64-79.","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: 'Djindjan 2000. In Hunters of the Golden Age. Pigeaud R. 2002. L''Anthropologie
  106: 445-. Bignon-Lau O 2013. QI in press. Lacarriere J.  2015. QI 359-360: 520-534.'
:bibtex_type: :misc
---
:bibtex_key: Kiel DB 2964
:bibtex_type: :misc
---
:bibtex_key: zie cambridge
:bibtex_type: :misc
---
:bibtex_key: 'L. Iakovleva Recherches sur le PalÔøΩolithique supÔøΩrieur de l''Ukraine
  (1997-2000) ERAUL 35-43. Marks A & Monigal 2004.  In  Brantingham P.  The early
  Upper Palaeolithic beyond Western Europe: 64-79.'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog