Site type

Location

Coordinates (degrees)
044.387° N, 004.424° E
Coordinates (DMS)
044° 23' 00" E, 004° 25' 00" N
Country (ISO 3166)
France (FR)

radiocarbon date Radiocarbon dates (24)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
GifA-11018/SacA-23626 drawing NA NA 25640±200 BP 30225–29296 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-11126/SacA-24666 drawing NA NA 28170±730 BP 34071–31100 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Guibert P. 2015. Q Geochronology 29: 36-45 Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675.Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-11517/SacA-28473 drawing NA NA 26070±180 BP 30785–30036 cal BP Quiles A. 2014. Radiocarbon 56: 833-850. Bird et al. 2022
GifA-12097/SacA-28982 charcoal NA NA 26740±200 BP 31176–30432 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-12098/SacA-28983 charcoal NA NA 26980±200 BP 31370–30839 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13102/SacA-33480 drawing NA NA 32090±470 BP 37495–35447 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13103/SacA-33481 charcoal NA NA 26400±240 BP 31055–30185 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13104/SacA-33482 drawing NA NA 31800±990 BP 38900–34439 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13106/SacA-33484 humic NA NA 32010±460 BP 37352–35395 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13107/SacA-33485 humic NA NA 26030±230 BP 30836–29970 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13108/SacA-35486 humic NA NA 32600±1000 BP 39640–35159 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13109/SacA-33487 humic NA NA 33600±3900 BP 43793–30976 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13134/SacA-33762 drawing NA NA 31830±450 BP 37070–35297 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Guibert P. 2015. Q Geochronology 29: 36-45 Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675.Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-13195/SacA-33483 drawing NA NA 31490±430 BP 36663–34895 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-14229/SacA-39211 charcoal NA NA 27010±290 BP 31655–30450 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-14230/SacA-39212 bone NA NA 26460±270 BP 31095–30185 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
GifA-14233/SacA-39215 humic NA NA 25930±310 BP 30949–29508 cal BP Valladas H. Eurasian Prehistory 1: 57-82. Sachse-Kozlowska E. & Kozlowski S.K. 2004. Piekary Krakow.. Flas D. 2008.Anthropologica et Praehistorica 119: 3-253. Bird et al. 2022
GifA-9226/SacA/14235 charcoal NA NA 30890±340 BP 35980–34611 cal BP Zilhao J. 2006. Pyrenae 37:7-84.Maillo Fernandez J.M. In TOWARDS A DEFINITION OF THE AURIGNACIAN: 111-130. Maroto J. 2012. QI 247: 15-25. Bird et al. 2022
GifA-9227/SacA-14236 charcoal NA NA 26490±200 BP 31075–30314 cal BP Larsson 2019 Bird et al. 2022
GifA-95128 bone NA NA 30340±570 BP 35987–33765 cal BP Valladas 2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Valladas  2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.,
  
}
@misc{Valladas  2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Guibert P.  2015. Q Geochronology 29: 36-45   Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.,
  
}
@misc{Quiles A.  2014. Radiocarbon 56: 833-850.,
  
}
@misc{Valladas H.  Eurasian Prehistory 1: 57-82. Sachse-Kozlowska E. & Kozlowski S.K. 2004. Piekary Krakow.. Flas D. 2008.Anthropologica et Praehistorica 119: 3-253.,
  
}
@misc{Zilhao J. 2006. Pyrenae 37:7-84.Maillo Fernandez J.M. In TOWARDS A DEFINITION OF THE AURIGNACIAN: 111-130. Maroto J.  2012. QI 247: 15-25.,
  
}
@misc{Larsson 2019,
  
}
@misc{Otte M. & Miller R. 1999. : European Late Pleistocene Isotope Stages 2 and 3: humans their ecology & cultural adaptations Eraul 90: 81-95. Flas D. 2005. Anthropologica et Praehistorica 116: 233-245.,
  
}
@misc{Brocher J.E. Gallia PrÔøΩhistoire 56   2016 8-27.,
  
}
@misc{Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Valladas  2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.","bibtex_type":"misc"}{"bibtex_key":"Valladas  2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie xxx (2014) xxxxxx. Guibert P.  2015. Q Geochronology 29: 36-45   Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.","bibtex_type":"misc"}{"bibtex_key":"Quiles A.  2014. Radiocarbon 56: 833-850.","bibtex_type":"misc"}{"bibtex_key":"Valladas H.  Eurasian Prehistory 1: 57-82. Sachse-Kozlowska E. & Kozlowski S.K. 2004. Piekary Krakow.. Flas D. 2008.Anthropologica et Praehistorica 119: 3-253.","bibtex_type":"misc"}{"bibtex_key":"Zilhao J. 2006. Pyrenae 37:7-84.Maillo Fernandez J.M. In TOWARDS A DEFINITION OF THE AURIGNACIAN: 111-130. Maroto J.  2012. QI 247: 15-25.","bibtex_type":"misc"}{"bibtex_key":"Larsson 2019","bibtex_type":"misc"}{"bibtex_key":"Otte M. & Miller R. 1999. : European Late Pleistocene Isotope Stages 2 and 3: humans their ecology & cultural adaptations Eraul 90: 81-95. Flas D. 2005. Anthropologica et Praehistorica 116: 233-245.","bibtex_type":"misc"}{"bibtex_key":"Brocher J.E. Gallia PrÔøΩhistoire 56   2016 8-27.","bibtex_type":"misc"}{"bibtex_key":"Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: 'Valladas  2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie
  xxx (2014) xxxxxx. Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.'
:bibtex_type: :misc
---
:bibtex_key: 'Valladas  2005. BSPF 102:109-113. J. Combier G. Jouve LÔøΩanthropologie
  xxx (2014) xxxxxx. Guibert P.  2015. Q Geochronology 29: 36-45   Faigenbaum-Golovin
  S.  2016. PNAS 113: 4670-4675.Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.'
:bibtex_type: :misc
---
:bibtex_key: 'Quiles A.  2014. Radiocarbon 56: 833-850.'
:bibtex_type: :misc
---
:bibtex_key: 'Valladas H.  Eurasian Prehistory 1: 57-82. Sachse-Kozlowska E. & Kozlowski
  S.K. 2004. Piekary Krakow.. Flas D. 2008.Anthropologica et Praehistorica 119: 3-253.'
:bibtex_type: :misc
---
:bibtex_key: 'Zilhao J. 2006. Pyrenae 37:7-84.Maillo Fernandez J.M. In TOWARDS A DEFINITION
  OF THE AURIGNACIAN: 111-130. Maroto J.  2012. QI 247: 15-25.'
:bibtex_type: :misc
---
:bibtex_key: Larsson 2019
:bibtex_type: :misc
---
:bibtex_key: 'Otte M. & Miller R. 1999. : European Late Pleistocene Isotope Stages
  2 and 3: humans their ecology & cultural adaptations Eraul 90: 81-95. Flas D. 2005.
  Anthropologica et Praehistorica 116: 233-245.'
:bibtex_type: :misc
---
:bibtex_key: Brocher J.E. Gallia PrÔøΩhistoire 56   2016 8-27.
:bibtex_type: :misc
---
:bibtex_key: 'Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog