Site type

Location

Coordinates (degrees)
050.789° N, 125.986° W
Coordinates (DMS)
050° 47' 00" W, 125° 59' 00" N
Country (ISO 3166)
Canada (CA)

radiocarbon date Radiocarbon dates (5)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
S-143 charcoal; charbon de bois NA NA 3520±110 BP 4089–3491 cal BP Chisholm 1986; Lowdon et al. 1974; MacDonald and Inglis 1981; Ames 2005; Rutherford et al. 1973 1975 1979; Stewart and Stewart 1996 Bird et al. 2022
S-142 charcoal; charbon de bois NA NA 16910±270 BP 21009–19623 cal BP Rutherford et al. 1981; Morrison 1989; Faunmap 2979 Bird et al. 2022
GaK-4858 charcoal; charbon de bois NA NA 1780±145 BP 2001–1357 cal BP CARD Bird et al. 2022
GaK-4857 charcoal; charbon de bois NA NA 3480±195 BP 4352–3257 cal BP Borden 1975; Rutherford et al. 1981; Capes 1964 1977; Ham 1982; Faunmap 4100 Bird et al. 2022
GaK-4856 charcoal; charbon de bois NA NA 1780±145 BP 2001–1357 cal BP Borden 1975; Rutherford et al. 1981; Capes 1964 1977; Ham 1982; Faunmap 4100 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Borden 1975;  Rutherford et al. 1981;  Capes 1964 1977;  Ham 1982;  Faunmap 4100,
  
}
@misc{CARD,
  
}
@misc{Rutherford et al. 1981; Morrison 1989; Faunmap 2979,
  
}
@misc{Chisholm 1986;  Lowdon et al. 1974;  MacDonald and Inglis 1981; Ames 2005;  Rutherford et al. 1973 1975 1979;  Stewart and Stewart 1996,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Borden 1975;  Rutherford et al. 1981;  Capes 1964 1977;  Ham 1982;  Faunmap 4100","bibtex_type":"misc"}{"bibtex_key":"CARD","bibtex_type":"misc"}{"bibtex_key":"Rutherford et al. 1981; Morrison 1989; Faunmap 2979","bibtex_type":"misc"}{"bibtex_key":"Chisholm 1986;  Lowdon et al. 1974;  MacDonald and Inglis 1981; Ames 2005;  Rutherford et al. 1973 1975 1979;  Stewart and Stewart 1996","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Borden 1975;  Rutherford et al. 1981;  Capes 1964 1977;  Ham 1982;  Faunmap
  4100
:bibtex_type: :misc
---
:bibtex_key: CARD
:bibtex_type: :misc
---
:bibtex_key: Rutherford et al. 1981; Morrison 1989; Faunmap 2979
:bibtex_type: :misc
---
:bibtex_key: Chisholm 1986;  Lowdon et al. 1974;  MacDonald and Inglis 1981; Ames
  2005;  Rutherford et al. 1973 1975 1979;  Stewart and Stewart 1996
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog