Site type

Location

Coordinates (degrees)
050.941° N, 119.488° W
Coordinates (DMS)
050° 56' 00" W, 119° 29' 00" N
Country (ISO 3166)
Canada (CA)

radiocarbon date Radiocarbon dates (5)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
GSC-407 charred wood; bois carbonisé NA NA 2680±100 BP McLeod and Skinner 1987; Wilmeth 1978a; Richards and Rousseau 1987; Stryd 1980; Rutherford et al. 1975 Bird et al. 2022
GSC-520 charred wood; bois carbonisé NA NA 3280±125 BP Wilmeth 1978a; Lowdon et al. 1969; Richards and Rousseau 1987; Sanger 1964-003; Sanger 1970 Bird et al. 2022
GX-406 charred wood; bois carbonisé NA NA 2670±130 BP Buchner 1979; Hambly 1994; B. Saylor 1989; S. Saylor 1976 1977 1989; Zoltai 1989a 1989b Bird et al. 2022
GX-407 charred wood; bois carbonisé NA NA 2680±100 BP Cook 1977; Gal 1982 Bird et al. 2022
I-1866 charred wood; bois carbonisé NA NA 1610±95 BP Bordaz 1969: 59 Stuckenrath & Lawn 1969: 154 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{McLeod and Skinner 1987;  Wilmeth 1978a;  Richards and Rousseau 1987;  Stryd 1980;  Rutherford et al. 1975,
  
}
@misc{Wilmeth 1978a;  Lowdon et al. 1969;  Richards and Rousseau 1987; Sanger 1964-003;  Sanger 1970,
  
}
@misc{Buchner 1979; Hambly 1994; B. Saylor 1989; S. Saylor 1976 1977 1989; Zoltai 1989a 1989b,
  
}
@misc{Cook 1977; Gal 1982,
  
}
@misc{Bordaz 1969: 59 Stuckenrath & Lawn 1969: 154,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"McLeod and Skinner 1987;  Wilmeth 1978a;  Richards and Rousseau 1987;  Stryd 1980;  Rutherford et al. 1975","bibtex_type":"misc"}{"bibtex_key":"Wilmeth 1978a;  Lowdon et al. 1969;  Richards and Rousseau 1987; Sanger 1964-003;  Sanger 1970","bibtex_type":"misc"}{"bibtex_key":"Buchner 1979; Hambly 1994; B. Saylor 1989; S. Saylor 1976 1977 1989; Zoltai 1989a 1989b","bibtex_type":"misc"}{"bibtex_key":"Cook 1977; Gal 1982","bibtex_type":"misc"}{"bibtex_key":"Bordaz 1969: 59 Stuckenrath & Lawn 1969: 154","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: McLeod and Skinner 1987;  Wilmeth 1978a;  Richards and Rousseau 1987;  Stryd
  1980;  Rutherford et al. 1975
:bibtex_type: :misc
---
:bibtex_key: Wilmeth 1978a;  Lowdon et al. 1969;  Richards and Rousseau 1987; Sanger
  1964-003;  Sanger 1970
:bibtex_type: :misc
---
:bibtex_key: Buchner 1979; Hambly 1994; B. Saylor 1989; S. Saylor 1976 1977 1989;
  Zoltai 1989a 1989b
:bibtex_type: :misc
---
:bibtex_key: Cook 1977; Gal 1982
:bibtex_type: :misc
---
:bibtex_key: 'Bordaz 1969: 59 Stuckenrath & Lawn 1969: 154'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog