Site types
Settlement and

Location

Coordinates (degrees)
NA
Coordinates (DMS)
NA
Country (ISO 3166)
Greece (GR)

radiocarbon date Radiocarbon dates (126)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
OxA-21434 Barley grain (1) NA NA 6933±38 BP ORAU
OxA-20965 Co854 Barley grain (3) NA NA 6878±35 BP Mee et al. 2014
OxA-20963 Co813 Wheat indeterminate grain NA NA 6858±35 BP Mee et al. 2014
OxA-20966 Co848 Barley grain (3) NA NA 6839±33 BP Mee et al. 2014
OxA-20949 Barley grain (3) NA NA 6834±36 BP ORAU
OxA-20964 Co835 Wheat indeterminate grain NA NA 6823±34 BP Mee et al. 2014
OxA-20985 Co844 Wheat indeterminate grain NA NA 6740±33 BP Mee et al. 2014
OxA-20823 Wheat indeterminate grain NA NA 6735±50 BP Mee et al. 2014, ORAU
OxA-21027 Free-threshing wheat grain NA NA 6691±32 BP ORAU
OxA-20961 Barley grain (2) NA NA 6670±32 BP ORAU
OxA-20956 G2013 Wheat indeterminate grain NA NA 6647±35 BP Mee et al. 2014
OxA-20958 Free-threshing wheat grain NA NA 6632±33 BP ORAU
OxA-20960 Free-threshing wheat grain NA NA 6602±34 BP ORAU
OxA-20962 Lentil (1) NA NA 6588±34 BP ORAU
OxA-20957 G2016 Wheat indeterminate grain NA NA 6585±35 BP Mee et al. 2014
OxA-20959 Free-threshing wheat grain NA NA 6584±34 BP ORAU
OxA-21110 G1139 Pea (2) NA NA 6391±36 BP Mee et al. 2014
OxA-20948 Pea (1) NA NA 6386±37 BP ORAU
OxA-21280 G1120 Large indeterminate legum NA NA 6365±35 BP Mee et al. 2014
OxA-20952 G2005 wheat indeterminate grain NA NA 6360±34 BP Mee et al. 2014

typological date Typological dates (93)

Classification Estimated age References
Bronze Age? NA NA
Bronze Age? NA NA
Bronze Age? NA NA
Bronze Age? NA NA
Bronze Age? NA NA
Bronze Age? NA NA
Bronze Age? NA NA
Bronze Age NA NA
Bronze Age NA NA
Bronze Age NA NA
Bronze Age NA NA
Bronze Age NA NA
Bronze Age NA NA

Bibliographic reference Bibliographic references

@misc{ORAU,
  
}
@misc{Mee et al. 2014,
  
}
@misc{Mee et al. 2014, ORAU,
  
}
@misc{Mee 2014,
  
}
@misc{Mee et al. 2014 ORAU,
  
}
@misc{Vermeersch2019,
  
}
@misc{Olalde  2015,
  
}
@misc{Petillon J.-M.  2015. QI 364: 126-143. Barshay-Szmidt C.  Quaternary International 414 (2016) 62-91.,
  
}
@misc{Stuckenrath 1963 84,
  
}
@misc{14SEA,
  url = {http://www.14sea.org/},
  note = {Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"ORAU","bibtex_type":"misc"}{"bibtex_key":"Mee et al. 2014","bibtex_type":"misc"}{"bibtex_key":"Mee et al. 2014, ORAU","bibtex_type":"misc"}{"bibtex_key":"Mee 2014","bibtex_type":"misc"}{"bibtex_key":"Mee et al. 2014 ORAU","bibtex_type":"misc"}{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}{"bibtex_key":"Olalde  2015","bibtex_type":"misc"}{"bibtex_key":"Petillon J.-M.  2015. QI 364: 126-143. Barshay-Szmidt C.  Quaternary International 414 (2016) 62-91.","bibtex_type":"misc"}{"bibtex_key":"Stuckenrath 1963 84","bibtex_type":"misc"}[{"bibtex_key":"14SEA","bibtex_type":"misc","url":"{http://www.14sea.org/}","note":"{Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}"}][{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: ORAU
:bibtex_type: :misc
---
:bibtex_key: Mee et al. 2014
:bibtex_type: :misc
---
:bibtex_key: Mee et al. 2014, ORAU
:bibtex_type: :misc
---
:bibtex_key: Mee 2014
:bibtex_type: :misc
---
:bibtex_key: Mee et al. 2014 ORAU
:bibtex_type: :misc
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
:bibtex_key: Olalde  2015
:bibtex_type: :misc
---
:bibtex_key: 'Petillon J.-M.  2015. QI 364: 126-143. Barshay-Szmidt C.  Quaternary
  International 414 (2016) 62-91.'
:bibtex_type: :misc
---
:bibtex_key: Stuckenrath 1963 84
:bibtex_type: :misc
---
- :bibtex_key: 14SEA
  :bibtex_type: :misc
  :url: "{http://www.14sea.org/}"
  :note: "{Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database
    for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}"
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog