Site type

Location

100 m
Leaflet Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community
Coordinates (degrees)
048.323° N, 015.399° E
Coordinates (DMS)
048° 19' 00" E, 015° 23' 00" N
Country (ISO 3166)
Austria (AT)

radiocarbon date Radiocarbon dates (61)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
GrN-20767 bone NA NA 25440±170 BP 30013–29265 cal BP Banadora Bird et al. 2022
GrN-20768 charcoal NA NA 26500±480 BP 31500–29899 cal BP Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Armand Colin Paris. Bird et al. 2022
GrN-21690 bone NA NA 25400±170 BP 29990–29252 cal BP Groningen IV 174 Bird et al. 2022
GrN-21898 bone NA NA 23860±270 BP 28701–27575 cal BP Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Paris. Soffer O. 1985. The Upper Paleolithic of the Central Russian Plain. Gavrilov K.N. 2015. QI 359-360: 335-345. Bird et al. 2022
GrN-22208 bone NA NA 24370±290 BP 29122–27900 cal BP Lanting/Mook 1977 86. Bird et al. 2022
GrN-894 NA NA 24710±180 BP 29215–28650 cal BP Deevey 1967 34 Bird et al. 2022
GrN-917 NA NA 22180±190 BP 26955–25997 cal BP Vermeersch 2020 Bird et al. 2022
H-246-231 charcoal NA NA 32000±3000 BP 41875–31130 cal BP Banadora. Haesaerts P. 2002. Quaternaire 14: 163-188.. Haesaerts P. 2013. Radiocarbon 55: 641-647. Bird et al. 2022
H-249-1276 charcoal NA NA 31700±1800 BP 40158–32230 cal BP Breunig 1987 168 Bird et al. 2022
OxA-17396 charcoal NA NA 32230±190 BP 36926–36225 cal BP Banadora. Nigst P. 2008. Quartar 55: 9-15. Haesaerts P. 2002. Quaternaire 14: 163-188.. Haesaerts P. 2013. Radiocarbon 55: 641-647. Teyssander N. 2018. JPA Bird et al. 2022
OxA-17397 charcoal NA NA 37980±300 BP 42464–42045 cal BP Nigst P.R. 2012. L'Anthropologie 116: 575-608. Bird et al. 2022
OxA-17398 Larix type A-1907 from D1 middle NA NA 39980±350 BP 43935–42744 cal BP Teyssander N. 2018. JPA Bird et al. 2022
OxA-17399 Larix type A-1911 NA NA 41280±380 BP 44695–43370 cal BP Caron-Laviolette E. 2018 Quaternary International 49: 12-29 Bird et al. 2022
OxA-17401 Larix type A-2017 NA NA 48500±800 BP 54942–49110 cal BP Vermeersch 2020 Bird et al. 2022
OxA-22294 charcoal NA NA 31750±260 BP 36555–35495 cal BP Banadora. Nigst P. 2008. Quartar 55: 9-15. Haesaerts P. 2002. Quaternaire 14: 163-188.. Haesaerts P. 2013. Radiocarbon 55: 641-647. Teyssander N. 2018. JPA Bird et al. 2022
OxA-22295 charcoal NA NA 36500±450 BP 42056–40810 cal BP Vermeersch 2020 Bird et al. 2022
OxA-23520 charcoal NA NA 39000±500 BP 43087–42250 cal BP Bayliss et al. 2015: Table 1 Bird et al. 2022
OxA-23562 charcoal NA NA 33850±800 BP 40525–36712 cal BP Puchol 2016 Bird et al. 2022
OxA-25836 Larix type A-2541 b NA NA 43200±900 BP 47335–44395 cal BP Teyssander N. 2018. JPA Bird et al. 2022
OxA-25837 Larix/Picea A-2537 NA NA 45100±1100 BP 49715–45452 cal BP Teyssander N. 2018. JPA Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Affolter J.  1994. Cupillard C.  2014. QI.2014.05.032.,
  
}
@article{CapuzzoEtAl2014,
  title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
  shorttitle = {EUBAR},
  author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
  year = {2014},
  month = {jan},
  journal = {Radiocarbon},
  volume = {56},
  number = {2},
  pages = {851–869},
  issn = {0033-8222, 1945-5755},
  doi = {10.2458/56.17453},
  abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
  langid = {english},
  month_numeric = {1}
}
@misc{Banadora,
  
}
@misc{Trinkaus E.  2007. American Journal of Physical Anthropology 134: 263-73. Angelucci D.  2009. Geoarchaeology 24: 277-310.,
  
}
@misc{Banadora. Nigst P.  2008. Quartar 55: 9-15.,
  
}
@misc{Banadora. Nigst P.  2008. Quartar 55: 9-15. Haesaerts P.  2002. Quaternaire 14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647. Teyssander N.  2018. JPA,
  
}
@article{Vermeersch2020,
  title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
  author = {Vermeersch, Pierre M},
  year = {2020},
  month = {aug},
  journal = {Data Brief},
  volume = {31},
  pages = {105793},
  issn = {2352-3409},
  doi = {10.1016/j.dib.2020.105793},
  abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
  month_numeric = {8}
}
@misc{Le Bras-Goude 2010,
  
}
@misc{Stadler 1995,
  
}
@misc{Zazzo A.  2014. Radiocarbon 56. L. Chiotti  / Quaternary International 359-360 (2015) 406e422,
  
}
@misc{Soto A.  2015. QI 364: 144-152.,
  
}
@misc{http://www.urgeschichte.uni-tuebingen.de/index.phpàid=38 Floss H. 2015 Palethnologie 7:,
  
}
@misc{Bourgeois/Fontijn 2015 56,
  
}
@misc{Bourgeois/Fontijn 2015 55,
  
}
@misc{Bourgeois/Fontijn 2015 54,
  
}
@misc{Street & Terbergen 2000. Thez German Upper Palaeolithic. In: Hunters of the Golden Age: 281-291. Hasaert P.  Trabalhos de Arqueologia 33: 133.  Nigst PR.  2011 L'A i p. Davies W. 2015. QSR ip,
  
}
@misc{De Quiros B. 1996. Eraul: 323-327.,
  
}
@misc{Lopez Pablo 2009,
  
}
@misc{Nigst P.R.  2012. L'Anthropologie 116: 575-608.,
  
}
@misc{Moure Romanillo A.M. & Gonzalez Morales M. R. 1988. Trabajos de Prehistoria 45: 19-49.,
  
}
@misc{Teyssander N.  2018. JPA,
  
}
@misc{Djindjian F.  1999. Le Paleolithique superieur en Europe. Paris Collin. Kovacs J. Bulletin of Geosciences 2012. 87: 13-19. Maier A. 2015 The Central European  Magdalenian Springer. G. Lengyel FOLIA QUATERNARIA 86 KRAKÔøΩW 2018 5ÔøΩ157,
  
}
@misc{Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Armand Colin Paris.,
  
}
@misc{Groningen IV 174,
  
}
@misc{Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Paris. Soffer O. 1985. The Upper Paleolithic of the Central Russian Plain. Gavrilov K.N.  2015. QI 359-360: 335-345.,
  
}
@misc{Lanting/Mook 1977 86.,
  
}
@misc{Deevey 1967 34,
  
}
@misc{Banadora. Haesaerts P.  2002. Quaternaire 14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647.,
  
}
@misc{Breunig 1987 168,
  
}
@misc{Caron-Laviolette E.  2018 Quaternary International 49: 12-29,
  
}
@misc{Bayliss et al. 2015: Table 1,
  
}
@misc{Puchol 2016,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Affolter J.  1994. Cupillard C.  2014. QI.2014.05.032.","bibtex_type":"misc"}[{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}]{"bibtex_key":"Banadora","bibtex_type":"misc"}{"bibtex_key":"Trinkaus E.  2007. American Journal of Physical Anthropology 134: 263-73. Angelucci D.  2009. Geoarchaeology 24: 277-310.","bibtex_type":"misc"}{"bibtex_key":"Banadora. Nigst P.  2008. Quartar 55: 9-15.","bibtex_type":"misc"}{"bibtex_key":"Banadora. Nigst P.  2008. Quartar 55: 9-15. Haesaerts P.  2002. Quaternaire 14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647. Teyssander N.  2018. JPA","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"Le Bras-Goude 2010","bibtex_type":"misc"}{"bibtex_key":"Stadler 1995","bibtex_type":"misc"}{"bibtex_key":"Zazzo A.  2014. Radiocarbon 56. L. Chiotti  / Quaternary International 359-360 (2015) 406e422","bibtex_type":"misc"}{"bibtex_key":"Soto A.  2015. QI 364: 144-152.","bibtex_type":"misc"}{"bibtex_key":"http://www.urgeschichte.uni-tuebingen.de/index.phpàid=38 Floss H. 2015 Palethnologie 7:","bibtex_type":"misc"}{"bibtex_key":"Bourgeois/Fontijn 2015 56","bibtex_type":"misc"}{"bibtex_key":"Bourgeois/Fontijn 2015 55","bibtex_type":"misc"}{"bibtex_key":"Bourgeois/Fontijn 2015 54","bibtex_type":"misc"}{"bibtex_key":"Street & Terbergen 2000. Thez German Upper Palaeolithic. In: Hunters of the Golden Age: 281-291. Hasaert P.  Trabalhos de Arqueologia 33: 133.  Nigst PR.  2011 L'A i p. Davies W. 2015. QSR ip","bibtex_type":"misc"}{"bibtex_key":"De Quiros B. 1996. Eraul: 323-327.","bibtex_type":"misc"}{"bibtex_key":"Lopez Pablo 2009","bibtex_type":"misc"}{"bibtex_key":"Nigst P.R.  2012. L'Anthropologie 116: 575-608.","bibtex_type":"misc"}{"bibtex_key":"Moure Romanillo A.M. & Gonzalez Morales M. R. 1988. Trabajos de Prehistoria 45: 19-49.","bibtex_type":"misc"}{"bibtex_key":"Teyssander N.  2018. JPA","bibtex_type":"misc"}{"bibtex_key":"Djindjian F.  1999. Le Paleolithique superieur en Europe. Paris Collin. Kovacs J. Bulletin of Geosciences 2012. 87: 13-19. Maier A. 2015 The Central European  Magdalenian Springer. G. Lengyel FOLIA QUATERNARIA 86 KRAKÔøΩW 2018 5ÔøΩ157","bibtex_type":"misc"}{"bibtex_key":"Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Armand Colin Paris.","bibtex_type":"misc"}{"bibtex_key":"Groningen IV 174","bibtex_type":"misc"}{"bibtex_key":"Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Paris. Soffer O. 1985. The Upper Paleolithic of the Central Russian Plain. Gavrilov K.N.  2015. QI 359-360: 335-345.","bibtex_type":"misc"}{"bibtex_key":"Lanting/Mook 1977 86.","bibtex_type":"misc"}{"bibtex_key":"Deevey 1967 34","bibtex_type":"misc"}{"bibtex_key":"Banadora. Haesaerts P.  2002. Quaternaire 14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647.","bibtex_type":"misc"}{"bibtex_key":"Breunig 1987 168","bibtex_type":"misc"}{"bibtex_key":"Caron-Laviolette E.  2018 Quaternary International 49: 12-29","bibtex_type":"misc"}{"bibtex_key":"Bayliss et al. 2015: Table 1","bibtex_type":"misc"}{"bibtex_key":"Puchol 2016","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Affolter J.  1994. Cupillard C.  2014. QI.2014.05.032.
:bibtex_type: :misc
---
- :bibtex_key: CapuzzoEtAl2014
  :bibtex_type: :article
  :title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
    Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
    France}"
  :shorttitle: "{EUBAR}"
  :author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
  :year: "{2014}"
  :month: "{jan}"
  :journal: "{Radiocarbon}"
  :volume: "{56}"
  :number: "{2}"
  :pages: "{851–869}"
  :issn: "{0033-8222, 1945-5755}"
  :doi: "{10.2458/56.17453}"
  :abstract: "{The chronological framework of European protohistory is mostly a relative
    chronology based on typology and stratigraphic data. Synchronization of different
    time periods suffers from a lack of absolute dates; therefore, disagreements between
    different chronological schemes are difficult to reconcile. An alternative approach
    was applied in this study to build a more precise and accurate absolute chronology.
    To the best of our knowledge, we have collected all the published 14C dates for
    the archaeological sites in the region from the Ebro River (Spain) to the Middle
    Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
    information associated with the 14C dates was organized in a database that totaled
    more than 1600 14C dates. In order to build an accurate and precise chronology,
    quality selection rules have been applied to the 14C dates based on both archaeological
    context and analytical quality. Using the OxCal software and Bayesian analysis,
    several 14C time sequences were created following the archaeological data and
    different possible scenarios were tested in northern Italy and southern France.}"
  :langid: "{english}"
  :month_numeric: "{1}"
---
:bibtex_key: Banadora
:bibtex_type: :misc
---
:bibtex_key: 'Trinkaus E.  2007. American Journal of Physical Anthropology 134: 263-73.
  Angelucci D.  2009. Geoarchaeology 24: 277-310.'
:bibtex_type: :misc
---
:bibtex_key: 'Banadora. Nigst P.  2008. Quartar 55: 9-15.'
:bibtex_type: :misc
---
:bibtex_key: 'Banadora. Nigst P.  2008. Quartar 55: 9-15. Haesaerts P.  2002. Quaternaire
  14: 163-188.. Haesaerts P.  2013. Radiocarbon 55: 641-647. Teyssander N.  2018.
  JPA'
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
  :bibtex_type: :article
  :title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
    of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
  :author: "{Vermeersch, Pierre M}"
  :year: "{2020}"
  :month: "{aug}"
  :journal: "{Data Brief}"
  :volume: "{31}"
  :pages: "{105793}"
  :issn: "{2352-3409}"
  :doi: "{10.1016/j.dib.2020.105793}"
  :abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
    Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
    was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
    humaine, Paris). One of the objectives was building a database of the human occupation
    of Europe during this period. The database has been enlarged and now includes
    Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
    conditions and the available chronometric dating. From version 14 on, only sites
    with chronometric data were included. In this database we have collected the available
    radiometric data from literature and from other more restricted databases. We
    try to incorporate newly published chronometric dates, collected from all kind
    of available publications. Only dates older than 9500 uncalibrated BP, correlated
    with a "cultural" level obtained by scientific excavations of European (Asian
    Russian Federation included) Palaeolithic sites, have been included. The dates
    are complemented with information related to cultural remains, stratigraphic,
    sedimentologic and palaeontologic information within a Microsoft Access database.
    For colleagues mainly interested in a list of all chronometric dates an Microsoft
    Excel list (with no details) is available (Tab. 1). A file, containing all sites
    with known coordinates, that can be opened for immediate use in Google Earth is
    available as a *.kmz file. It will give the possibility to introduce (by file
    open) in Google Earth the whole site list in "My Places". The database, version
    27 (first version was available in 2002), contains now 13,202 site forms, (most
    of them with their geographical coordinates), comprising 17,022 radiometric data:
    Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
    and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
    are conventional dates BP. This improved version 27 replaces the older version
    26.}'
  :month_numeric: "{8}"
---
:bibtex_key: Le Bras-Goude 2010
:bibtex_type: :misc
---
:bibtex_key: Stadler 1995
:bibtex_type: :misc
---
:bibtex_key: Zazzo A.  2014. Radiocarbon 56. L. Chiotti  / Quaternary International
  359-360 (2015) 406e422
:bibtex_type: :misc
---
:bibtex_key: 'Soto A.  2015. QI 364: 144-152.'
:bibtex_type: :misc
---
:bibtex_key: 'http://www.urgeschichte.uni-tuebingen.de/index.phpàid=38 Floss H. 2015
  Palethnologie 7:'
:bibtex_type: :misc
---
:bibtex_key: Bourgeois/Fontijn 2015 56
:bibtex_type: :misc
---
:bibtex_key: Bourgeois/Fontijn 2015 55
:bibtex_type: :misc
---
:bibtex_key: Bourgeois/Fontijn 2015 54
:bibtex_type: :misc
---
:bibtex_key: 'Street & Terbergen 2000. Thez German Upper Palaeolithic. In: Hunters
  of the Golden Age: 281-291. Hasaert P.  Trabalhos de Arqueologia 33: 133.  Nigst
  PR.  2011 L''A i p. Davies W. 2015. QSR ip'
:bibtex_type: :misc
---
:bibtex_key: 'De Quiros B. 1996. Eraul: 323-327.'
:bibtex_type: :misc
---
:bibtex_key: Lopez Pablo 2009
:bibtex_type: :misc
---
:bibtex_key: 'Nigst P.R.  2012. L''Anthropologie 116: 575-608.'
:bibtex_type: :misc
---
:bibtex_key: 'Moure Romanillo A.M. & Gonzalez Morales M. R. 1988. Trabajos de Prehistoria
  45: 19-49.'
:bibtex_type: :misc
---
:bibtex_key: Teyssander N.  2018. JPA
:bibtex_type: :misc
---
:bibtex_key: 'Djindjian F.  1999. Le Paleolithique superieur en Europe. Paris Collin.
  Kovacs J. Bulletin of Geosciences 2012. 87: 13-19. Maier A. 2015 The Central European  Magdalenian
  Springer. G. Lengyel FOLIA QUATERNARIA 86 KRAKÔøΩW 2018 5ÔøΩ157'
:bibtex_type: :misc
---
:bibtex_key: Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur
  en Europe. Armand Colin Paris.
:bibtex_type: :misc
---
:bibtex_key: Groningen IV 174
:bibtex_type: :misc
---
:bibtex_key: 'Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur
  en Europe. Paris. Soffer O. 1985. The Upper Paleolithic of the Central Russian Plain.
  Gavrilov K.N.  2015. QI 359-360: 335-345.'
:bibtex_type: :misc
---
:bibtex_key: Lanting/Mook 1977 86.
:bibtex_type: :misc
---
:bibtex_key: Deevey 1967 34
:bibtex_type: :misc
---
:bibtex_key: 'Banadora. Haesaerts P.  2002. Quaternaire 14: 163-188.. Haesaerts P.  2013.
  Radiocarbon 55: 641-647.'
:bibtex_type: :misc
---
:bibtex_key: Breunig 1987 168
:bibtex_type: :misc
---
:bibtex_key: 'Caron-Laviolette E.  2018 Quaternary International 49: 12-29'
:bibtex_type: :misc
---
:bibtex_key: 'Bayliss et al. 2015: Table 1'
:bibtex_type: :misc
---
:bibtex_key: Puchol 2016
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog