Chouillly la haute Borne
Archaeological site
in Russian Federation
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Location
- Coordinates (degrees)
- 050.000° N, 107.900° E
- Coordinates (DMS)
- 050° 00' 00" E, 107° 54' 00" N
- Country (ISO 3166)
- Russian Federation (RU)
Linked Data
There is no linked data available for this record.
Lab ID | Context | Material | Taxon | Method | Uncalibrated age | Calibrated age | References |
---|---|---|---|---|---|---|---|
Beta-241408 | bone | NA | NA | 30290±170 BP | 35110–34419 cal BP | Buvit I. 2016. QI ip Bird et al. 2022 | |
Poz-48903 | fosse 5003 | NA | NA | 9660±50 BP | 11200–10787 cal BP | Remy A. Digging in the Mesolithic SPF 2017: 99-105 Bird et al. 2022 | |
Poz-48904 | fosse 5004 | NA | NA | 9510±50 BP | 11075–10591 cal BP | Remy A. Digging in the Mesolithic SPF 2017: 99-105 Bird et al. 2022 | |
Poz-48914 | fosse 5036 | NA | NA | 9930±60 BP | 11686–11225 cal BP | Olalde 2018 Bird et al. 2022 | |
Poz-54032 | fosse5025 | NA | NA | 9620±50 BP | 11178–10773 cal BP | Górski et al. 2013 106 Bird et al. 2022 | |
Poz-5405 | fosse 5008 | NA | NA | 9560±70 BP | 11170–10688 cal BP | Furmanek et al. 2015 537 Tab. 1 Bird et al. 2022 | |
Poz-48908 | fose 5010 | NA | NA | 9870±50 BP | 11396–11200 cal BP | Remy A. Digging in the Mesolithic SPF 2017: 99-105 Bird et al. 2022 |
Classification | Estimated age | References |
---|
Bibliographic references
- No bibliographic information available. [Buvit I. 2016. QI ip]
- No bibliographic information available. [Remy A. Digging in the Mesolithic SPF 2017: 99-105]
- No bibliographic information available. [Olalde 2018]
- No bibliographic information available. [Górski et al. 2013 106]
- No bibliographic information available. [Furmanek et al. 2015 537 Tab. 1]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Buvit I. 2016. QI ip,
}
@misc{Remy A. Digging in the Mesolithic SPF 2017: 99-105,
}
@misc{Olalde 2018,
}
@misc{Górski et al. 2013 106,
}
@misc{Furmanek et al. 2015 537 Tab. 1,
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
{"bibtex_key":"Buvit I. 2016. QI ip","bibtex_type":"misc"}{"bibtex_key":"Remy A. Digging in the Mesolithic SPF 2017: 99-105","bibtex_type":"misc"}{"bibtex_key":"Olalde 2018","bibtex_type":"misc"}{"bibtex_key":"Górski et al. 2013 106","bibtex_type":"misc"}{"bibtex_key":"Furmanek et al. 2015 537 Tab. 1","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Buvit I. 2016. QI ip
:bibtex_type: :misc
---
:bibtex_key: 'Remy A. Digging in the Mesolithic SPF 2017: 99-105'
:bibtex_type: :misc
---
:bibtex_key: Olalde 2018
:bibtex_type: :misc
---
:bibtex_key: Górski et al. 2013 106
:bibtex_type: :misc
---
:bibtex_key: Furmanek et al. 2015 537 Tab. 1
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"