Site type

Location

Coordinates (degrees)
046.960° N, 000.708° E
Coordinates (DMS)
046° 57' 00" E, 000° 42' 00" N
Country (ISO 3166)
France (FR)

radiocarbon date Radiocarbon dates (13)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Beta-234193 bone Coelodonta antiquitatis Linty NA NA 31640±230 BP Aubry T 2012. JHE 62: 116-137. Thomsen K.J. 2016. QG 31: 77-96. Bird et al. 2022
Beta-249595 bone NA NA 32110±240 BP Aubry T 2012. JHE 62: 116-137. Aubry T. 2014. JAS 52: 436-45. Thomsen K.J. 2016. QG 31: 77-96. Bird et al. 2022
Beta-249596 bone Coelodonta antiquitatis Linty NA NA 35770±380 BP Aubry T 2012. JHE 62: 116-137. Bird et al. 2022
Lyon-4688 bone NA NA 18600±140 BP Ducasse S. 2007. BSPF 104: 771-785. Ducasse S. 2011. Paleo 22: 101-154. Chauviere R-X 2017. BSPF 114: 619. Bird et al. 2022
Lyon-6920 (SacA-18936) bone Coelodonta antiquitatis Linty NA NA 34520±850 BP Maniatis 2016 Bird et al. 2022
OxA-22135 antler NA NA 19020±110 BP DoukaJacobs.2014Chrono Bird et al. 2022
OxA-22315 antler NA NA 19020±110 BP Aubry T 2012. JHE 62: 116-137. Aubry T. 2014. JAS 52: 436-45. Thomsen K.J. 2016. QG 31: 77-96. Bird et al. 2022
OxA-22316 bone Coelodonta antiquitatis Linty NA NA 41200±1300 BP Vermeersch2019 Bird et al. 2022
OxA-22342 tooth NA NA 37400±800 BP Marshall 2012 Fazeli Nashli et al. 2013 Bird et al. 2022
OxA-26470 bone NA NA 39100±1000 BP Aubry T 2012. JHE 62: 116-137. Aubry T. 2014. JAS 52: 436-45. Thomsen K.J. 2016. QG 31: 77-96. Bird et al. 2022
OxA-26471 bone NA NA 41000±1300 BP Aubry T 2012. JHE 62: 116-137. Aubry T. 2014. JAS 52: 436-45. Thomsen K.J. 2016. QG 31: 77-96. Bird et al. 2022
OxA-26472 bone Coelodonta antiquitatis Linty NA NA 40600±1200 BP Quiles A. 2014. Radiocarbon 56: 833-850. Faigenbaum-Golovin S. 2016. PNAS 113: 4670-4675. Bird et al. 2022
OxA-29527 bone NA NA 41500±1500 BP Vermeersch2019 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Aubry T 2012. JHE 62: 116-137. Thomsen K.J.  2016. QG 31: 77-96.,
  
}
@misc{Aubry T  2012. JHE 62: 116-137. Aubry T.  2014. JAS 52: 436-45. Thomsen K.J.  2016. QG 31: 77-96.,
  
}
@misc{Aubry T   2012. JHE 62: 116-137.,
  
}
@misc{Ducasse S.  2007. BSPF 104: 771-785. Ducasse S.  2011. Paleo 22: 101-154. Chauviere R-X   2017. BSPF 114: 619.,
  
}
@misc{Maniatis 2016,
  
}
@misc{DoukaJacobs.2014Chrono,
  
}
@misc{Vermeersch2019,
  
}
@misc{Marshall 2012 Fazeli Nashli et al. 2013,
  
}
@misc{Quiles A.  2014. Radiocarbon 56: 833-850. Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Aubry T 2012. JHE 62: 116-137. Thomsen K.J.  2016. QG 31: 77-96.","bibtex_type":"misc"}{"bibtex_key":"Aubry T  2012. JHE 62: 116-137. Aubry T.  2014. JAS 52: 436-45. Thomsen K.J.  2016. QG 31: 77-96.","bibtex_type":"misc"}{"bibtex_key":"Aubry T   2012. JHE 62: 116-137.","bibtex_type":"misc"}{"bibtex_key":"Ducasse S.  2007. BSPF 104: 771-785. Ducasse S.  2011. Paleo 22: 101-154. Chauviere R-X   2017. BSPF 114: 619.","bibtex_type":"misc"}{"bibtex_key":"Maniatis 2016","bibtex_type":"misc"}{"bibtex_key":"DoukaJacobs.2014Chrono","bibtex_type":"misc"}{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012 Fazeli Nashli et al. 2013","bibtex_type":"misc"}{"bibtex_key":"Quiles A.  2014. Radiocarbon 56: 833-850. Faigenbaum-Golovin S.  2016. PNAS 113: 4670-4675.","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: 'Aubry T 2012. JHE 62: 116-137. Thomsen K.J.  2016. QG 31: 77-96.'
:bibtex_type: :misc
---
:bibtex_key: 'Aubry T  2012. JHE 62: 116-137. Aubry T.  2014. JAS 52: 436-45. Thomsen
  K.J.  2016. QG 31: 77-96.'
:bibtex_type: :misc
---
:bibtex_key: 'Aubry T   2012. JHE 62: 116-137.'
:bibtex_type: :misc
---
:bibtex_key: 'Ducasse S.  2007. BSPF 104: 771-785. Ducasse S.  2011. Paleo 22: 101-154.
  Chauviere R-X   2017. BSPF 114: 619.'
:bibtex_type: :misc
---
:bibtex_key: Maniatis 2016
:bibtex_type: :misc
---
:bibtex_key: DoukaJacobs.2014Chrono
:bibtex_type: :misc
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012 Fazeli Nashli et al. 2013
:bibtex_type: :misc
---
:bibtex_key: 'Quiles A.  2014. Radiocarbon 56: 833-850. Faigenbaum-Golovin S.  2016.
  PNAS 113: 4670-4675.'
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog