Site type

Location

100 m
Leaflet Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community
Coordinates (degrees)
040.666° N, 106.343° W
Coordinates (DMS)
040° 39' 00" W, 106° 20' 00" N
Country (ISO 3166)
United States (US)

radiocarbon date Radiocarbon dates (19)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Beta-233487 CHARCOAL NA NA 720±40 BP 726–563 cal BP UWyo2021 Bird et al. 2022
Beta-233488 CHARCOAL NA NA 720±40 BP 726–563 cal BP UWyo2021 Bird et al. 2022
Beta-247509 CHARCOAL NA NA 810±40 BP 780–673 cal BP UWyo2021 Bird et al. 2022
Beta-247510 CHARCOAL NA NA 860±40 BP 904–681 cal BP UWyo2021 Bird et al. 2022
Beta-250586 CHARCOAL NA NA 870±40 BP 905–686 cal BP UWyo2021 Bird et al. 2022
Beta-262632 CHARCOAL NA NA 1840±40 BP 1861–1625 cal BP UWyo2021 Bird et al. 2022
Beta-26415 BONE Bison NA 160±40 BP 288–55 cal BP UWyo2021 Bird et al. 2022
Beta-285032 CHARCOAL NA NA 800±40 BP 775–670 cal BP WYATT PERSONAL COMMUNICATION Bird et al. 2022
Beta-285033 POTTERYRESIDUE NA NA 640±40 BP 666–553 cal BP WYATT PERSONAL COMMUNICATION Bird et al. 2022
Beta-315093 CHARCOAL NA NA 330±30 BP 470–310 cal BP UWyo2021 Bird et al. 2022
Beta-315094 CHARCOAL NA NA 810±30 BP 771–675 cal BP UWyo2021 Bird et al. 2022
Beta-315095 CHARCOAL NA NA 830±30 BP 780–683 cal BP UWyo2021 Bird et al. 2022
Beta-315096 CHARCOAL NA NA 760±30 BP 728–665 cal BP UWyo2021 Bird et al. 2022
Beta-315097 BONE Pronghorn AMS 820±30 BP 775–677 cal BP UWyo2021 Bird et al. 2022
Beta-316069 BONE Bison NA 640±30 BP 664–554 cal BP UWyo2021 Bird et al. 2022
Beta-7100 CHARCOAL NA NA 750±50 BP 771–564 cal BP Lintz 1985 Bird et al. 2022
Beta-7101 CHARCOAL NA NA 720±70 BP 771–550 cal BP Lintz 1985 Bird et al. 2022
Beta-7102 CHARCOAL NA NA 2470±80 BP 2727–2355 cal BP LINTZ 1985 Bird et al. 2022
Beta-7103 CHARCOAL NA NA 980±50 BP 960–745 cal BP Lintz 1985 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

  • No bibliographic information available. [UWyo2021]
  • No bibliographic information available. [WYATT PERSONAL COMMUNICATION]
  • No bibliographic information available. [Lintz 1985]
  • No bibliographic information available. [LINTZ 1985]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{UWyo2021,
  
}
@misc{WYATT PERSONAL COMMUNICATION,
  
}
@misc{Lintz 1985,
  
}
@misc{LINTZ 1985,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"UWyo2021","bibtex_type":"misc"}{"bibtex_key":"WYATT PERSONAL COMMUNICATION","bibtex_type":"misc"}{"bibtex_key":"Lintz 1985","bibtex_type":"misc"}{"bibtex_key":"LINTZ 1985","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: UWyo2021
:bibtex_type: :misc
---
:bibtex_key: WYATT PERSONAL COMMUNICATION
:bibtex_type: :misc
---
:bibtex_key: Lintz 1985
:bibtex_type: :misc
---
:bibtex_key: LINTZ 1985
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog