Site type

Location

100 m
Leaflet Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community
Coordinates (degrees)
048.414° N, 016.837° E
Coordinates (DMS)
048° 24' 00" E, 016° 50' 00" N
Country (ISO 3166)
Austria (AT)

radiocarbon date Radiocarbon dates (33)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
ETH-16496 seed/fruit NA 14C 2785±50 BP 2999–2765 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
ETH-16497 seed/fruit NA 14C 2750±50 BP 2950–2760 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
ETH-16498 charcoal NA 14C 2880±50 BP 3160–2875 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
ETH-16499 seed/fruit NA 14C 2830±50 BP 3104–2783 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
ETH-16500 seed/fruit NA 14C 2840±50 BP 3141–2790 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
VERA-2917 bone Animalia 14C 2810±36 BP 3000–2789 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
VERA-2918 bone Homo sapiens 14C 2747±36 BP 2930–2761 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
VERA-2919 bone Homo sapiens 14C 2998±36 BP 3332–3070 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
VRI-584 charcoal NA 14C 2700±80 BP 3056–2542 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
VRI-635 charcoal NA 14C 2880±90 BP 3318–2780 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
VRI-636 charcoal NA 14C 2880±90 BP 3318–2780 cal BP Capuzzo, Boaretto, and Barceló 2014 Weninger 2022
VERA-2918 Individuo I, fosa V841/1 Hueso humano NA NA 2747±36 BP 2930–2761 cal BP FELGENHAUER F. 1996. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, lám. 108 (2-6).
VERA-2919 Individuo VII, fosa V841/1 Hueso humano NA NA 2998±36 BP 3332–3070 cal BP FELGENHAUER F. 1996. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006.
VRI-584 Zona Westwall, Holzkonstr., nivel XIVa Madera carbonizada NA NA 2700±80 BP 3056–2542 cal BP BARG F. 1987. SCHNEIDER M. 1991. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, láms.
ETH-16497 A/O 18, fosa con semillas de Vitis vinifera ssp. vinifera, zona Wagneracker Semillas carbonizadas NA NA 2750±50 BP 2950–2760 cal BP FELGENHAUER F. 1996. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, láms.
ETH-16496 ST 11399, fosa V643, C/-1, zona Hügelfeld Semillas carbonizadas NA NA 2785±50 BP 2999–2765 cal BP FELGENHAUER F. 1996. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, lám. 55, 70 (4-8), 71.
VERA-2917 Fosa A164, Radio de canis Grube mit Mädchenschädel Hueso animal NA NA 2810±36 BP 3000–2789 cal BP BARG F. 1987. SCHNEIDER M. 1991. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, láms.
ETH-16499 ST 17053, trinchera 7, Verf. 2, fosa, zona Wagneracker Semillas carbonizadas NA NA 2830±50 BP 3104–2783 cal BP FELGENHAUER F. 1996. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, láms.
ETH-16500 ST 17078, trinchera 7, Verf. 5, fosa, zona Wagneracker Semillas carbonizadas NA NA 2840±50 BP 3141–2790 cal BP FELGENHAUER F. 1996. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, láms.
VRI-635 Zona Westwall, verkohltes Gras Madera carbonizada NA NA 2880±90 BP 3318–2780 cal BP BARG F. 1987. SCHNEIDER M. 1991. KOHLER-SCHNEIDER M. 2001. HELLERSCHMID I. 2006, láms.

typological date Typological dates (11)

Classification Estimated age References
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014

Bibliographic reference Bibliographic references

@article{CapuzzoEtAl2014,
  title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
  shorttitle = {EUBAR},
  author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
  year = {2014},
  month = {jan},
  journal = {Radiocarbon},
  volume = {56},
  number = {2},
  pages = {851–869},
  issn = {0033-8222, 1945-5755},
  doi = {10.2458/56.17453},
  abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
  langid = {english},
  month_numeric = {1}
}
@misc{FELGENHAUER F. 1996.
KOHLER-SCHNEIDER M. 2001.
HELLERSCHMID I. 2006, lám. 108 (2-6).,
  
}
@misc{FELGENHAUER F. 1996.
KOHLER-SCHNEIDER M. 2001.
HELLERSCHMID I. 2006.,
  
}
@misc{BARG F. 1987.
SCHNEIDER M. 1991.
KOHLER-SCHNEIDER M. 2001.
HELLERSCHMID I. 2006, láms.
,
  
}
@misc{FELGENHAUER F. 1996.
KOHLER-SCHNEIDER M. 2001.
HELLERSCHMID I. 2006, láms.,
  
}
@misc{FELGENHAUER F. 1996.
KOHLER-SCHNEIDER M. 2001.
HELLERSCHMID I. 2006, lám. 55, 70 (4-8), 71.,
  
}
@misc{BARG F. 1987.
SCHNEIDER M. 1991.
KOHLER-SCHNEIDER M. 2001.
HELLERSCHMID I. 2006, láms.,
  
}
@article{Vermeersch2020,
  title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
  author = {Vermeersch, Pierre M},
  year = {2020},
  month = {aug},
  journal = {Data Brief},
  volume = {31},
  pages = {105793},
  issn = {2352-3409},
  doi = {10.1016/j.dib.2020.105793},
  abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
  month_numeric = {8}
}
@misc{Stadler 2005/2006,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@misc{EUBAR,
  url = {https://telearchaeology.org/EUBAR/},
  note = {CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
[{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}]{"bibtex_key":"FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I. 2006, lám. 108 (2-6).","bibtex_type":"misc"}{"bibtex_key":"FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I. 2006.","bibtex_type":"misc"}{"bibtex_key":"BARG F. 1987.\r\nSCHNEIDER M. 1991.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I. 2006, láms.\r\n","bibtex_type":"misc"}{"bibtex_key":"FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I. 2006, láms.","bibtex_type":"misc"}{"bibtex_key":"FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I. 2006, lám. 55, 70 (4-8), 71.","bibtex_type":"misc"}{"bibtex_key":"BARG F. 1987.\r\nSCHNEIDER M. 1991.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I. 2006, láms.","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"Stadler 2005/2006","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"EUBAR","bibtex_type":"misc","url":"{https://telearchaeology.org/EUBAR/}","note":"{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
- :bibtex_key: CapuzzoEtAl2014
  :bibtex_type: :article
  :title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
    Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
    France}"
  :shorttitle: "{EUBAR}"
  :author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
  :year: "{2014}"
  :month: "{jan}"
  :journal: "{Radiocarbon}"
  :volume: "{56}"
  :number: "{2}"
  :pages: "{851–869}"
  :issn: "{0033-8222, 1945-5755}"
  :doi: "{10.2458/56.17453}"
  :abstract: "{The chronological framework of European protohistory is mostly a relative
    chronology based on typology and stratigraphic data. Synchronization of different
    time periods suffers from a lack of absolute dates; therefore, disagreements between
    different chronological schemes are difficult to reconcile. An alternative approach
    was applied in this study to build a more precise and accurate absolute chronology.
    To the best of our knowledge, we have collected all the published 14C dates for
    the archaeological sites in the region from the Ebro River (Spain) to the Middle
    Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
    information associated with the 14C dates was organized in a database that totaled
    more than 1600 14C dates. In order to build an accurate and precise chronology,
    quality selection rules have been applied to the 14C dates based on both archaeological
    context and analytical quality. Using the OxCal software and Bayesian analysis,
    several 14C time sequences were created following the archaeological data and
    different possible scenarios were tested in northern Italy and southern France.}"
  :langid: "{english}"
  :month_numeric: "{1}"
---
:bibtex_key: "FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I.
  2006, lám. 108 (2-6)."
:bibtex_type: :misc
---
:bibtex_key: "FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I.
  2006."
:bibtex_type: :misc
---
:bibtex_key: "BARG F. 1987.\r\nSCHNEIDER M. 1991.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID
  I. 2006, láms.\r\n"
:bibtex_type: :misc
---
:bibtex_key: "FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I.
  2006, láms."
:bibtex_type: :misc
---
:bibtex_key: "FELGENHAUER F. 1996.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID I.
  2006, lám. 55, 70 (4-8), 71."
:bibtex_type: :misc
---
:bibtex_key: "BARG F. 1987.\r\nSCHNEIDER M. 1991.\r\nKOHLER-SCHNEIDER M. 2001.\r\nHELLERSCHMID
  I. 2006, láms."
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
  :bibtex_type: :article
  :title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
    of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
  :author: "{Vermeersch, Pierre M}"
  :year: "{2020}"
  :month: "{aug}"
  :journal: "{Data Brief}"
  :volume: "{31}"
  :pages: "{105793}"
  :issn: "{2352-3409}"
  :doi: "{10.1016/j.dib.2020.105793}"
  :abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
    Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
    was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
    humaine, Paris). One of the objectives was building a database of the human occupation
    of Europe during this period. The database has been enlarged and now includes
    Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
    conditions and the available chronometric dating. From version 14 on, only sites
    with chronometric data were included. In this database we have collected the available
    radiometric data from literature and from other more restricted databases. We
    try to incorporate newly published chronometric dates, collected from all kind
    of available publications. Only dates older than 9500 uncalibrated BP, correlated
    with a "cultural" level obtained by scientific excavations of European (Asian
    Russian Federation included) Palaeolithic sites, have been included. The dates
    are complemented with information related to cultural remains, stratigraphic,
    sedimentologic and palaeontologic information within a Microsoft Access database.
    For colleagues mainly interested in a list of all chronometric dates an Microsoft
    Excel list (with no details) is available (Tab. 1). A file, containing all sites
    with known coordinates, that can be opened for immediate use in Google Earth is
    available as a *.kmz file. It will give the possibility to introduce (by file
    open) in Google Earth the whole site list in "My Places". The database, version
    27 (first version was available in 2002), contains now 13,202 site forms, (most
    of them with their geographical coordinates), comprising 17,022 radiometric data:
    Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
    and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
    are conventional dates BP. This improved version 27 replaces the older version
    26.}'
  :month_numeric: "{8}"
---
:bibtex_key: Stadler 2005/2006
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: EUBAR
  :bibtex_type: :misc
  :url: "{https://telearchaeology.org/EUBAR/}"
  :note: "{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements
    for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts
    from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog