Site type

Location

Coordinates (degrees)
059.380° N, 010.740° E
Coordinates (DMS)
059° 22' 00" E, 010° 44' 00" N
Country (ISO 3166)
Norway (NO)

radiocarbon date Radiocarbon dates (23)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Beta-98207 Charcoal NA NA 1650±60 BP Fitzgerald R. 1998 Bird et al. 2022
Beta-98203 Charcoal NA NA 1680±50 BP Solheim_Norway Bird et al. 2022
Beta-98201 Charcoal NA NA 1710±60 BP Solheim_Norway Bird et al. 2022
T-12498 Charcoal NA NA 1724±80 BP Solheim_Norway Bird et al. 2022
TUa-1734 Cereal NA NA 1745±98 BP Solheim_Norway Bird et al. 2022
T-12497 Charcoal NA NA 1749±39 BP Solheim_Norway Bird et al. 2022
TUa-1733 Cereal NA NA 1784±95 BP Solheim_Norway Bird et al. 2022
Beta-98204 Charcoal NA NA 1800±100 BP Solheim_Norway Bird et al. 2022
Beta-104892 Charcoal NA NA 1830±40 BP Solheim_Norway Bird et al. 2022
TUa-1730 Cereal NA NA 1841±68 BP Solheim_Norway Bird et al. 2022
Beta-98199 Charcoal NA NA 1890±60 BP Solheim_Norway Bird et al. 2022
Beta-98198 Charcoal NA NA 1900±50 BP Solheim_Norway Bird et al. 2022
Beta-98200 Charcoal NA NA 1910±40 BP Solheim_Norway Bird et al. 2022
TUa-1732 Cereal NA NA 1914±67 BP Solheim_Norway Bird et al. 2022
TUa-1655 Charcoal NA NA 1925±66 BP Solheim_Norway Bird et al. 2022
T-12813 Charcoal NA NA 1948±109 BP Solheim_Norway Bird et al. 2022
Beta-98206 Charcoal NA NA 2210±100 BP Solheim_Norway Bird et al. 2022
TUa-1638 Charcoal NA NA 2778±67 BP Solheim_Norway Bird et al. 2022
TUa-1728 Cereal NA NA 3076±68 BP Solheim_Norway Bird et al. 2022
Beta-98202 Charcoal NA NA 3100±60 BP Solheim_Norway Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Solheim_Norway]
  • No bibliographic information available. [Fitzgerald R. 1998]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Solheim_Norway,
  
}
@misc{Fitzgerald R. 1998,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Solheim_Norway","bibtex_type":"misc"}{"bibtex_key":"Fitzgerald R. 1998","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Solheim_Norway
:bibtex_type: :misc
---
:bibtex_key: Fitzgerald R. 1998
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog