Site type

Location

100 m
Leaflet Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community
Coordinates (degrees)
044.903° N, 122.585° W
Coordinates (DMS)
044° 54' 00" W, 122° 35' 00" N
Country (ISO 3166)
United States (US)

radiocarbon date Radiocarbon dates (50)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Beta-101866 CHARCOAL NA NA 4340±90 BP 5290–4648 cal BP UWyo2021 Bird et al. 2022
Beta-112673 CHARCOAL NA NA 2950±70 BP 3337–2884 cal BP UWyo2021 Bird et al. 2022
Beta-112674 CHARCOAL NA NA 2410±60 BP 2705–2342 cal BP UWyo2021 Bird et al. 2022
Beta-112675 CHARCOAL NA NA 3810±140 BP 4777–3730 cal BP UWyo2021 Bird et al. 2022
Beta-112676 CHARCOAL NA NA 3710±110 BP 4409–3728 cal BP UWyo2021 Bird et al. 2022
Beta-112678 CHARCOAL NA NA 4860±50 BP 5713–5475 cal BP UWyo2021 Bird et al. 2022
Beta-112679 CHARCOAL NA NA 4750±140 BP 5880–5044 cal BP UWyo2021 Bird et al. 2022
Beta-112680 CHARCOAL NA NA 1280±80 BP 1342–995 cal BP UWyo2021 Bird et al. 2022
Beta-112681 CHARCOAL NA NA 2460±40 BP 2707–2365 cal BP UWyo2021 Bird et al. 2022
Beta-112682 CHARCOAL NA NA 4090±40 BP 4815–4443 cal BP UWyo2021 Bird et al. 2022
Beta-112683 CHARCOAL NA NA 1350±60 BP 1360–1126 cal BP UWyo2021 Bird et al. 2022
Beta-112684 CHARCOAL NA NA 1130±40 BP 1184–955 cal BP UWyo2021 Bird et al. 2022
Beta-112685 CHARCOAL NA NA 4180±40 BP 4838–4580 cal BP UWyo2021 Bird et al. 2022
Beta-112686 CHARCOAL NA NA 3540±60 BP 3980–3644 cal BP UWyo2021 Bird et al. 2022
Beta-112687 CHARCOAL NA NA 680±90 BP 771–520 cal BP UWyo2021 Bird et al. 2022
Beta-112688 CHARCOAL NA NA 2080±70 BP 2304–1835 cal BP UWyo2021 Bird et al. 2022
Beta-112689 CHARCOAL NA NA 2930±120 BP 3366–2786 cal BP UWyo2021 Bird et al. 2022
Beta-112690 CHARCOAL NA NA 320±40 BP 475–301 cal BP UWyo2021 Bird et al. 2022
Beta-112691 CHARCOAL NA NA 4480±130 BP 5470–4834 cal BP UWyo2021 Bird et al. 2022
Beta-112692 CHARCOAL NA NA 3350±160 BP 4070–3210 cal BP UWyo2021 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

  • No bibliographic information available. [UWyo2021]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{UWyo2021,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"UWyo2021","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: UWyo2021
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog