Site type

Location

Coordinates (degrees)
055.963° N, 073.011° W
Coordinates (DMS)
055° 57' 00" W, 073° 00' 00" N
Country (ISO 3166)
Canada (CA)

radiocarbon date Radiocarbon dates (5)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
UQ-726 charbon de bois; charcoal NA NA 1040±120 BP Rutherford et al. 1981; Delibrias and Guillier 1988; Taillon et Barrà 1987; Badgley 1980; Plumet 1994; Plumet et Badgley 1980 Bird et al. 2022
BGS-1473 charcoal; charbon de bois NA NA 3260±100 BP Taillon et Barrà 1987; C. Pinard p.c. 1999; Avataq Cultural Institute 1992a 1992b; Delibrias et al. 1974; Gendron 2001; Plumet 1976 1980 Bird et al. 2022
Gif-1567 charcoal; charbon de bois NA NA 3300±110 BP CARD Bird et al. 2022
BGS-1474 charcoal; charbon de bois NA NA 3375±90 BP Taillon et Barrà 1987; C. Pinard p.c. 1999; Avataq Cultural Institute 1992a 1992b; Delibrias et al. 1974; Gendron 2001; Plumet 1976 1980 Bird et al. 2022
BGS-1475 charcoal; charbon de bois NA NA 3800±70 BP Avataq Cultural Institute 1991 1992d; Bernier 1996 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

@misc{Taillon et Barrà 1987; C. Pinard p.c. 1999; Avataq Cultural Institute 1992a 1992b; Delibrias et al. 1974; Gendron 2001; Plumet 1976 1980,
  
}
@misc{Avataq Cultural Institute 1991 1992d; Bernier 1996,
  
}
@misc{CARD,
  
}
@misc{Rutherford et al. 1981; Delibrias and Guillier 1988; Taillon et Barrà 1987; Badgley 1980; Plumet 1994; Plumet et Badgley 1980,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Taillon et Barrà 1987; C. Pinard p.c. 1999; Avataq Cultural Institute 1992a 1992b; Delibrias et al. 1974; Gendron 2001; Plumet 1976 1980","bibtex_type":"misc"}{"bibtex_key":"Avataq Cultural Institute 1991 1992d; Bernier 1996","bibtex_type":"misc"}{"bibtex_key":"CARD","bibtex_type":"misc"}{"bibtex_key":"Rutherford et al. 1981; Delibrias and Guillier 1988; Taillon et Barrà 1987; Badgley 1980; Plumet 1994; Plumet et Badgley 1980","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Taillon et Barrà 1987; C. Pinard p.c. 1999; Avataq Cultural Institute
  1992a 1992b; Delibrias et al. 1974; Gendron 2001; Plumet 1976 1980
:bibtex_type: :misc
---
:bibtex_key: Avataq Cultural Institute 1991 1992d; Bernier 1996
:bibtex_type: :misc
---
:bibtex_key: CARD
:bibtex_type: :misc
---
:bibtex_key: Rutherford et al. 1981; Delibrias and Guillier 1988; Taillon et Barrà
  1987; Badgley 1980; Plumet 1994; Plumet et Badgley 1980
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog