Site types
Rockshelter and

Location

Coordinates (degrees)
019.200° S, 143.200° E
Coordinates (DMS)
019° 12' 00" E, 143° 12' 00" S
Country (ISO 3166)
Australia (AU)

radiocarbon date Radiocarbon dates (23)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Wk-19346 Sq. CO, spit 3 Charcoal NA Radiocarbon 619±47 BP Wallis et al. 2009
ANU-2625 Sq. CO, spit 5 Charcoal NA Radiocarbon 1530±35 BP Wallis et al. 2009
ANU-2626 Sq. CO, spit 6 Charcoal NA Radiocarbon 1600±35 BP Wallis et al. 2009
ANU-2627 Sq. CO, spit 9 Charcoal NA Radiocarbon 3100±40 BP Wallis et al. 2009
ANU-2629 Sq. CO, spit 10 Charcoal NA Radiocarbon 3525±40 BP Wallis et al. 2009
Wk-19348 Sq. CO, spit 16(2) Charcoal NA Radiocarbon 3566±51 BP Wallis et al. 2009
ANUI- 2630 Sq. CO, spit 13 Charcoal NA Radiocarbon 3765±40 BP Wallis et al. 2009
ANU-2631 Sq. CO, spit 16(2) Charcoal NA Radiocarbon 4260±45 BP Wallis et al. 2009
Wk-19347 Sq. CO, spit 10 Charcoal NA Radiocarbon 5233±67 BP Wallis et al. 2009
Wk-19349 Sq. CO, spit 19(2) Charcoal NA Radiocarbon 8581±40 BP Wallis et al. 2009
ANU-2633 Sq. CO, spit 22(1) Charcoal NA Radiocarbon 9310±50 BP Wallis et al. 2009
Wk-19350 Sq. CO, spit 3 24(2) Charcoal NA Radiocarbon 13185±75 BP Wallis et al. 2009
Wk-24199 Sq. B1, East Section Charcoal NA Radiocarbon 28419±320 BP Wallis et al. 2009
ANU-2625 Charcoal NA NA 1530±35 BP Wallis et al. 2009 Bird et al. 2022
ANU-2626 Charcoal NA NA 1600±35 BP Wallis et al. 2009 Bird et al. 2022
ANU-2627 Charcoal NA NA 3100±40 BP Wallis et al. 2009 Bird et al. 2022
ANU-2629 Charcoal NA NA 3525±40 BP Wallis et al. 2009 Bird et al. 2022
ANU-2631 Charcoal NA NA 4260±45 BP Wallis et al. 2009 Bird et al. 2022
ANU-2633 Charcoal NA NA 9310±50 BP Wallis et al. 2009 Bird et al. 2022
Wk-19346 Charcoal NA NA 619±47 BP Wallis et al. 2009 Bird et al. 2022

typological date Typological dates (0)

Classification Estimated age References

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Wallis et al. 2009]
  • https://doi.org/10.5284/1027216 [AustArch]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Wallis et al. 2009,
  
}
@misc{AustArch,
  url = {https://doi.org/10.5284/1027216},
  note = {Alan Williams, Sean Ulm (2014) AustArch: A Database of 14C and Luminescence Ages from Archaeological Sites in Australia [data-set]. York: Archaeology Data Service [distributor] https://doi.org/10.5284/1027216}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Wallis et al. 2009","bibtex_type":"misc"}[{"bibtex_key":"AustArch","bibtex_type":"misc","url":"{https://doi.org/10.5284/1027216}","note":"{Alan Williams, Sean Ulm (2014) AustArch: A Database of 14C and Luminescence Ages from Archaeological Sites in Australia [data-set]. York: Archaeology Data Service [distributor] https://doi.org/10.5284/1027216}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Wallis et al. 2009
:bibtex_type: :misc
---
- :bibtex_key: AustArch
  :bibtex_type: :misc
  :url: "{https://doi.org/10.5284/1027216}"
  :note: "{Alan Williams, Sean Ulm (2014) AustArch: A Database of 14C and Luminescence
    Ages from Archaeological Sites in Australia [data-set]. York: Archaeology Data
    Service [distributor] https://doi.org/10.5284/1027216}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog

Country code:
NA → AU