Site type

Location

Coordinates (degrees)
028.650° S, 020.967° E
Coordinates (DMS)
028° 39' 00" E, 020° 58' 00" S
Country (ISO 3166)
South Africa (ZA)

radiocarbon date Radiocarbon dates (10)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Pta-2870 Level 3 charcoal NA conventional 14C 2800±60 BP beaumont1995bea
Pta-2871 Level 2 charcoal NA conventional 14C 2860±45 BP beaumont1995bea
Pta-2888 Level 7 charcoal NA conventional 14C 2860±45 BP beaumont1995bea
Pta-2889 Level 9a charcoal NA conventional 14C 4140±75 BP beaumont1995bea
Pta-2893 Level 8 charcoal NA conventional 14C 3440±60 BP beaumont1995bea
Pta-2870 charcoal NA NA 2800±60 BP Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River Frontier: 236-264. Cape Town: UCT Press. Bird et al. 2022
Pta-2871 charcoal NA NA 2860±45 BP Maggs TM and Ward V. 1984. Early Iron Age sites in the Muden area of Natal.Annals of the Natal Museum26(1) pp.105-140. Bird et al. 2022
Pta-2888 charcoal NA NA 2860±45 BP Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River Frontier: 236-264. Cape Town: UCT Press. Bird et al. 2022
Pta-2889 charcoal NA NA 4140±75 BP Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin pp.87-106. Bird et al. 2022
Pta-2893 charcoal NA NA 3440±60 BP Morris AG. 1992. The skeletons of contact. A study of protohistoric burials from the lower Orange River valley South Africa. Witwatersrand University Press: Johannesburg Bird et al. 2022

typological date Typological dates (10)

Classification Estimated age References
LSA NA beaumont1995bea
Wilton NA NA
LSA NA beaumont1995bea
Wilton NA NA
LSA NA beaumont1995bea
Wilton NA NA
LSA NA beaumont1995bea
Wilton NA NA
LSA NA beaumont1995bea
Wilton NA NA

Bibliographic reference Bibliographic references

@misc{beaumont1995bea,
  
}
@misc{Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River Frontier: 236-264. Cape Town: UCT Press.,
  
}
@misc{Maggs TM and Ward V. 1984. Early Iron Age sites in the Muden area of Natal.Annals of the Natal Museum26(1) pp.105-140.,
  
}
@misc{Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin pp.87-106.,
  
}
@misc{Morris AG. 1992. The skeletons of contact. A study of protohistoric burials from the lower Orange River valley South Africa. Witwatersrand University Press: Johannesburg,
  
}
@misc{SARD,
  url = {https://github.com/emmaloftus/Southern-African-Radiocarbon-Database},
  note = { Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"beaumont1995bea","bibtex_type":"misc"}{"bibtex_key":"Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River Frontier: 236-264. Cape Town: UCT Press.","bibtex_type":"misc"}{"bibtex_key":"Maggs TM and Ward V. 1984. Early Iron Age sites in the Muden area of Natal.Annals of the Natal Museum26(1) pp.105-140.","bibtex_type":"misc"}{"bibtex_key":"Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin pp.87-106.","bibtex_type":"misc"}{"bibtex_key":"Morris AG. 1992. The skeletons of contact. A study of protohistoric burials from the lower Orange River valley South Africa. Witwatersrand University Press: Johannesburg","bibtex_type":"misc"}[{"bibtex_key":"SARD","bibtex_type":"misc","url":"{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}","note":"{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: beaumont1995bea
:bibtex_type: :misc
---
:bibtex_key: 'Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology
  of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River
  Frontier: 236-264. Cape Town: UCT Press.'
:bibtex_type: :misc
---
:bibtex_key: Maggs TM and Ward V. 1984. Early Iron Age sites in the Muden area of
  Natal.Annals of the Natal Museum26(1) pp.105-140.
:bibtex_type: :misc
---
:bibtex_key: Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa
  North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin
  pp.87-106.
:bibtex_type: :misc
---
:bibtex_key: 'Morris AG. 1992. The skeletons of contact. A study of protohistoric
  burials from the lower Orange River valley South Africa. Witwatersrand University
  Press: Johannesburg'
:bibtex_type: :misc
---
- :bibtex_key: SARD
  :bibtex_type: :misc
  :url: "{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}"
  :note: "{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon
    database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog