Site type

Location

Coordinates (degrees)
031.434° S, 029.824° E
Coordinates (DMS)
031° 26' 00" E, 029° 49' 00" S
Country (ISO 3166)
South Africa (ZA)

radiocarbon date Radiocarbon dates (98)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
IT-C-2380 458 charcoal NA AMS 19871±117 BP fisher2020cof
IT-C-2381 456 charcoal NA AMS 12679±59 BP fisher2020cof
IT-C-2382 460 charcoal NA AMS 11860±56 BP fisher2020cof
IT-C-2383 216 charcoal NA AMS 9543±47 BP fisher2020cof
IT-C-2384 432 charcoal NA AMS 9543±47 BP fisher2020cof
IT-C-2385 426 charcoal NA AMS 9602±50 BP fisher2020cof
IT-C-2386 432 charcoal NA AMS 9541±55 BP fisher2020cof
IT-C-2387 426 charcoal NA AMS 9568±47 BP fisher2020cof
IT-C-2388 432 charcoal NA AMS 9594±51 BP fisher2020cof
IT-C-2389 354 charcoal NA AMS 9561±46 BP fisher2020cof
IT-C-2390 456 charcoal NA AMS 11650±55 BP fisher2020cof
IT-C-2531 432 charcoal NA AMS 9458±43 BP fisher2020cof
IT-C-2532 440 charcoal NA AMS 9644±46 BP fisher2020cof
IT-C-2533 426 charcoal NA AMS 9599±44 BP fisher2020cof
IT-C-2534 446 charcoal NA AMS 23024±154 BP fisher2020cof
IT-C-2535 394 charcoal NA AMS 9560±43 BP fisher2020cof
IT-C-2536 458 charcoal NA AMS 19980±103 BP fisher2020cof
IT-C-2537 384 charcoal NA AMS 9499±45 BP fisher2020cof
IT-C-2538 420 charcoal NA AMS 13596±59 BP fisher2020cof
IT-C-2539 460 charcoal NA AMS 11855±56 BP fisher2020cof

typological date Typological dates (167)

Classification Estimated age References
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA
LSA NA fisher2020cof
NA NA

Bibliographic reference Bibliographic references

@misc{fisher2020cof,
  
}
@misc{Fisher E. C. et al 2020. Coastal occupation and foraging during the last glacial maximum and early Holocene at Waterfall Bluff eastern Pondoland South Africa. Quaternary Research 1–41. https://doi.org/10.1017/qua.2020.26,
  
}
@misc{SARD,
  
}
@misc{Gehlen 2010,
  
}
@misc{Dames and Moore 1974,
  
}
@misc{SARD,
  url = {https://github.com/emmaloftus/Southern-African-Radiocarbon-Database},
  note = { Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"fisher2020cof","bibtex_type":"misc"}{"bibtex_key":"Fisher E. C. et al 2020. Coastal occupation and foraging during the last glacial maximum and early Holocene at Waterfall Bluff eastern Pondoland South Africa. Quaternary Research 1–41. https://doi.org/10.1017/qua.2020.26","bibtex_type":"misc"}{"bibtex_key":"SARD","bibtex_type":"misc"}{"bibtex_key":"Gehlen 2010","bibtex_type":"misc"}{"bibtex_key":"Dames and Moore 1974","bibtex_type":"misc"}[{"bibtex_key":"SARD","bibtex_type":"misc","url":"{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}","note":"{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: fisher2020cof
:bibtex_type: :misc
---
:bibtex_key: Fisher E. C. et al 2020. Coastal occupation and foraging during the last
  glacial maximum and early Holocene at Waterfall Bluff eastern Pondoland South Africa.
  Quaternary Research 1–41. https://doi.org/10.1017/qua.2020.26
:bibtex_type: :misc
---
:bibtex_key: SARD
:bibtex_type: :misc
---
:bibtex_key: Gehlen 2010
:bibtex_type: :misc
---
:bibtex_key: Dames and Moore 1974
:bibtex_type: :misc
---
- :bibtex_key: SARD
  :bibtex_type: :misc
  :url: "{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}"
  :note: "{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon
    database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog