Site type

Location

Coordinates (degrees)
022.183° S, 029.433° E
Coordinates (DMS)
022° 10' 00" E, 029° 25' 00" S
Country (ISO 3166)
South Africa (ZA)

radiocarbon date Radiocarbon dates (12)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Pta-1819 wood NA conventional 14C 1110±50 BP 1176–926 cal BP vogel2000rds
Pta-1967 charcoal NA conventional 14C 1160±50 BP 1241–957 cal BP vogel2000rds
Pta-7650 charcoal NA conventional 14C 1060±20 BP 1049–925 cal BP vogel2000rds
pta-7659 charcoal NA conventional 14C 1030±45 BP 1057–795 cal BP vogel2000rds
Pta-7664 charcoal NA conventional 14C 1140±45 BP 1177–956 cal BP vogel2000rds
Pta-7666 charcoal NA conventional 14C 1170±20 BP 1224–997 cal BP vogel2000rds
Pta-1819 wood NA NA 1110±50 BP 1176–926 cal BP Vogel JC and Visser E. 1981. Pretoria Radiocarbon dates II. Radiocarbon 23: 43-80 Bird et al. 2022
Pta-1967 charcoal NA NA 1160±50 BP 1241–957 cal BP Hall M. 1980. Enkwazini an Iron Age site on the Zululand coast.Annals of the Natal Museum24(1) pp.97-109. Bird et al. 2022
Pta-7650 charcoal NA NA 1060±20 BP 1049–925 cal BP Huffman T.N. 1998. Presidential address: the antiquity of lobola.The South African Archaeological Bulletin 53 pp.57-62. Bird et al. 2022
Pta-7664 charcoal NA NA 1140±45 BP 1177–956 cal BP Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57. Bird et al. 2022
Pta-7666 charcoal NA NA 1170±20 BP 1224–997 cal BP Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57. Bird et al. 2022
pta-7659 charcoal NA NA 1030±45 BP 1057–795 cal BP Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57. Bird et al. 2022

typological date Typological dates (12)

Classification Estimated age References
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
Iron Age NA vogel2000rds
Iron Age NA vogel2000rds
Iron Age NA vogel2000rds
Iron Age NA vogel2000rds
Iron Age NA vogel2000rds
Iron Age NA vogel2000rds

Bibliographic reference Bibliographic references

@misc{vogel2000rds,
  
}
@misc{Vogel JC and Visser E. 1981. Pretoria Radiocarbon dates II. Radiocarbon 23: 43-80,
  
}
@misc{Hall M. 1980. Enkwazini an Iron Age site on the Zululand coast.Annals of the Natal Museum24(1) pp.97-109.,
  
}
@misc{Huffman T.N. 1998. Presidential address: the antiquity of lobola.The South African Archaeological Bulletin 53 pp.57-62.,
  
}
@misc{Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57.,
  
}
@misc{SARD,
  url = {https://github.com/emmaloftus/Southern-African-Radiocarbon-Database},
  note = { Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"vogel2000rds","bibtex_type":"misc"}{"bibtex_key":"Vogel JC and Visser E. 1981. Pretoria Radiocarbon dates II. Radiocarbon 23: 43-80","bibtex_type":"misc"}{"bibtex_key":"Hall M. 1980. Enkwazini an Iron Age site on the Zululand coast.Annals of the Natal Museum24(1) pp.97-109.","bibtex_type":"misc"}{"bibtex_key":"Huffman T.N. 1998. Presidential address: the antiquity of lobola.The South African Archaeological Bulletin 53 pp.57-62.","bibtex_type":"misc"}{"bibtex_key":"Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57.","bibtex_type":"misc"}[{"bibtex_key":"SARD","bibtex_type":"misc","url":"{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}","note":"{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: vogel2000rds
:bibtex_type: :misc
---
:bibtex_key: 'Vogel JC and Visser E. 1981. Pretoria Radiocarbon dates II. Radiocarbon
  23: 43-80'
:bibtex_type: :misc
---
:bibtex_key: Hall M. 1980. Enkwazini an Iron Age site on the Zululand coast.Annals
  of the Natal Museum24(1) pp.97-109.
:bibtex_type: :misc
---
:bibtex_key: 'Huffman T.N. 1998. Presidential address: the antiquity of lobola.The
  South African Archaeological Bulletin 53 pp.57-62.'
:bibtex_type: :misc
---
:bibtex_key: Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo
  Valley.Goodwin Series pp.51-57.
:bibtex_type: :misc
---
- :bibtex_key: SARD
  :bibtex_type: :misc
  :url: "{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}"
  :note: "{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon
    database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog