Site type

Location

Coordinates (degrees)
020.533° S, 028.500° E
Coordinates (DMS)
020° 31' 00" E, 028° 30' 00" S
Country (ISO 3166)
Zimbabwe (ZW)

radiocarbon date Radiocarbon dates (23)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
SR-39 charcoal NA NA 35500±780 BP Sheppard J.G. and Swart E. 1966. Rhodesian radiocarbon measurements II.Radiocarbon8 pp.423-429. Bird et al. 2022
SR-8 charcoal NA NA 42200±2300 BP Ozainne et al. 2014 Bird et al. 2022
SR-9 charcoal NA NA 42200±2300 BP Livingstone Smith A. 2007 Bird et al. 2022

typological date Typological dates (23)

Classification Estimated age References
LSA NA cooke1963rep
NA NA
LSA NA vogel1986prd
NA NA
LSA NA vogel1986prd
NA NA
NA cooke1963rep
LSA NA cooke1963rep
NA NA
LSA NA cooke1963rep
NA NA
LSA NA cooke1963rep
NA NA
LSA NA cooke1963rep
NA NA
MSA NA cooke1963rep
NA NA
MSA NA cooke1963rep
NA NA
MSA NA cooke1963rep

Bibliographic reference Bibliographic references

@misc{cooke1963rep,
  
}
@misc{vogel1986prd,
  
}
@misc{Vogel JC. 2001. Radiometric dates for the Middle Stone Age in South Africa. In Tobias PV Raath MA Moggi-Cecchi J Doyle GA (eds). Humanity from African Naissance to Coming Millennia Florence University Press: Florence 261–268.,
  
}
@misc{Vogel JC Fuls A and Visser E. 1986. Pretoria Radiocarbon dates III. Radiocarbon 28: 1133-117,
  
}
@misc{Simmons 1991 863,
  
}
@misc{Clist 1998,
  
}
@misc{Sheppard J.G. and Swart E. 1971. Rhodesian radiocarbon measurements IV.Radiocarbon13(2) pp.420-431.,
  
}
@misc{Sampson C.G. 1970. Smithfield Industrial Complex: further field results. National Museum Memoir 5. Bloemfontein: National Museum.,
  
}
@misc{SARD,
  
}
@misc{Sheppard J.G. and Swart E. 1966. Rhodesian radiocarbon measurements II.Radiocarbon8 pp.423-429.,
  
}
@misc{Ozainne et al. 2014,
  
}
@misc{Livingstone Smith A. 2007,
  
}
@misc{SARD,
  url = {https://github.com/emmaloftus/Southern-African-Radiocarbon-Database},
  note = { Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"cooke1963rep","bibtex_type":"misc"}{"bibtex_key":"vogel1986prd","bibtex_type":"misc"}{"bibtex_key":"Vogel JC. 2001. Radiometric dates for the Middle Stone Age in South Africa. In Tobias PV Raath MA Moggi-Cecchi J Doyle GA (eds). Humanity from African Naissance to Coming Millennia Florence University Press: Florence 261–268.","bibtex_type":"misc"}{"bibtex_key":"Vogel JC Fuls A and Visser E. 1986. Pretoria Radiocarbon dates III. Radiocarbon 28: 1133-117","bibtex_type":"misc"}{"bibtex_key":"Simmons 1991 863","bibtex_type":"misc"}{"bibtex_key":"Clist 1998","bibtex_type":"misc"}{"bibtex_key":"Sheppard J.G. and Swart E. 1971. Rhodesian radiocarbon measurements IV.Radiocarbon13(2) pp.420-431.","bibtex_type":"misc"}{"bibtex_key":"Sampson C.G. 1970. Smithfield Industrial Complex: further field results. National Museum Memoir 5. Bloemfontein: National Museum.","bibtex_type":"misc"}{"bibtex_key":"SARD","bibtex_type":"misc"}{"bibtex_key":"Sheppard J.G. and Swart E. 1966. Rhodesian radiocarbon measurements II.Radiocarbon8 pp.423-429.","bibtex_type":"misc"}{"bibtex_key":"Ozainne et al. 2014","bibtex_type":"misc"}{"bibtex_key":"Livingstone Smith A. 2007","bibtex_type":"misc"}[{"bibtex_key":"SARD","bibtex_type":"misc","url":"{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}","note":"{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: cooke1963rep
:bibtex_type: :misc
---
:bibtex_key: vogel1986prd
:bibtex_type: :misc
---
:bibtex_key: 'Vogel JC. 2001. Radiometric dates for the Middle Stone Age in South
  Africa. In Tobias PV Raath MA Moggi-Cecchi J Doyle GA (eds). Humanity from African
  Naissance to Coming Millennia Florence University Press: Florence 261–268.'
:bibtex_type: :misc
---
:bibtex_key: 'Vogel JC Fuls A and Visser E. 1986. Pretoria Radiocarbon dates III.
  Radiocarbon 28: 1133-117'
:bibtex_type: :misc
---
:bibtex_key: Simmons 1991 863
:bibtex_type: :misc
---
:bibtex_key: Clist 1998
:bibtex_type: :misc
---
:bibtex_key: Sheppard J.G. and Swart E. 1971. Rhodesian radiocarbon measurements IV.Radiocarbon13(2)
  pp.420-431.
:bibtex_type: :misc
---
:bibtex_key: 'Sampson C.G. 1970. Smithfield Industrial Complex: further field results.
  National Museum Memoir 5. Bloemfontein: National Museum.'
:bibtex_type: :misc
---
:bibtex_key: SARD
:bibtex_type: :misc
---
:bibtex_key: Sheppard J.G. and Swart E. 1966. Rhodesian radiocarbon measurements II.Radiocarbon8
  pp.423-429.
:bibtex_type: :misc
---
:bibtex_key: Ozainne et al. 2014
:bibtex_type: :misc
---
:bibtex_key: Livingstone Smith A. 2007
:bibtex_type: :misc
---
- :bibtex_key: SARD
  :bibtex_type: :misc
  :url: "{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}"
  :note: "{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon
    database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog