Site type

Location

Coordinates (degrees)
023.959° S, 031.091° E
Coordinates (DMS)
023° 57' 00" E, 031° 05' 00" S
Country (ISO 3166)
South Africa (ZA)

radiocarbon date Radiocarbon dates (9)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Pta-267 NA conventional 14C 785±36 BP evers1987cpn
Pta-268 NA conventional 14C 0±40 BP evers1987cpn
Pta-289 NA conventional 14C 200±50 BP evers1987cpn
Pta-567 NA conventional 14C 110±40 BP evers1987cpn
Pta-568 NA conventional 14C 690±45 BP evers1987cpn
Pta-267 NA NA 785±36 BP Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin pp.87-106. Bird et al. 2022
Pta-289 NA NA 200±50 BP Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River Frontier: 236-264. Cape Town: UCT Press. Bird et al. 2022
Pta-567 NA NA 110±40 BP Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57. Bird et al. 2022
Pta-568 NA NA 690±45 BP Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town). Bird et al. 2022

typological date Typological dates (10)

Classification Estimated age References
Iron Age NA evers1987cpn
Early Iron Age NA NA
Iron Age NA evers1987cpn
Later Iron Age NA NA
Iron Age NA evers1987cpn
Later Iron Age NA NA
Iron Age NA evers1987cpn
Later Iron Age NA NA
Iron Age NA evers1987cpn
Early Iron Age NA NA

Bibliographic reference Bibliographic references

@misc{evers1987cpn,
  
}
@misc{Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin pp.87-106.,
  
}
@misc{Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River Frontier: 236-264. Cape Town: UCT Press.,
  
}
@misc{Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57.,
  
}
@misc{Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town).,
  
}
@misc{SARD,
  url = {https://github.com/emmaloftus/Southern-African-Radiocarbon-Database},
  note = { Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"evers1987cpn","bibtex_type":"misc"}{"bibtex_key":"Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin pp.87-106.","bibtex_type":"misc"}{"bibtex_key":"Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River Frontier: 236-264. Cape Town: UCT Press.","bibtex_type":"misc"}{"bibtex_key":"Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley.Goodwin Series pp.51-57.","bibtex_type":"misc"}{"bibtex_key":"Jerardino AMS. 1996.Changing social landscapes of the western Cape coast of southern Africa over the last 4500 years(Doctoral dissertation University of Cape Town).","bibtex_type":"misc"}[{"bibtex_key":"SARD","bibtex_type":"misc","url":"{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}","note":"{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: evers1987cpn
:bibtex_type: :misc
---
:bibtex_key: Evers T.M. and Van der Merwe N.J. 1987. Iron Age Ceramics from Phalaborwa
  North Eastern Transvaal Lowveld South Africa.The South African Archaeological Bulletin
  pp.87-106.
:bibtex_type: :misc
---
:bibtex_key: 'Beaumont PB. Smith A.B. & Vogel J.C. 1995. Before the Einiqua: the archaeology
  of the frontier zone. In: Smith A.B. (ed.) Einiqualand: Studies of the Orange River
  Frontier: 236-264. Cape Town: UCT Press.'
:bibtex_type: :misc
---
:bibtex_key: Vogel J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo
  Valley.Goodwin Series pp.51-57.
:bibtex_type: :misc
---
:bibtex_key: Jerardino AMS. 1996.Changing social landscapes of the western Cape coast
  of southern Africa over the last 4500 years(Doctoral dissertation University of
  Cape Town).
:bibtex_type: :misc
---
- :bibtex_key: SARD
  :bibtex_type: :misc
  :url: "{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}"
  :note: "{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon
    database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog