Site type

Location

Coordinates (degrees)
033.733° S, 018.450° E
Coordinates (DMS)
033° 43' 00" E, 018° 27' 00" S
Country (ISO 3166)
South Africa (ZA)

radiocarbon date Radiocarbon dates (36)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Pta-8741 bone Homo sapiens conventional 14C 3310±60 BP pfeiffer2020lhc
Pta-928 bone Homo sapiens conventional 14C 3220±54 BP pfeiffer2020lhc
Pta-8752 bone Homo sapiens conventional 14C 3200±35 BP pfeiffer2020lhc
Pta-8807 bone Homo sapiens conventional 14C 2970±60 BP pfeiffer2020lhc
Pta-8445 bone Homo sapiens conventional 14C 2960±60 BP pfeiffer2020lhc
OxA-2056-46 bone Homo sapiens AMS 2573±31 BP pfeiffer2020lhc
Pta-4293 bone Homo sapiens conventional 14C 2490±50 BP pfeiffer2020lhc
GX-23871 bone Homo sapiens AMS 2490±50 BP pfeiffer2020lhc
GX-23455 bone Homo sapiens AMS 2460±50 BP pfeiffer2020lhc
GX-13180 bone Homo sapiens AMS 2355±85 BP pfeiffer2020lhc
OxA-V-2056-40 bone Homo sapiens AMS 2295±28 BP pfeiffer2020lhc
Pta-4201 bone Homo sapiens conventional 14C 2170±60 BP pfeiffer2020lhc
OxA-2055-44 bone Homo sapiens AMS 2161±30 BP pfeiffer2020lhc
OxA-2056-47 bone Homo sapiens AMS 2140±29 BP pfeiffer2020lhc
Pta-9069 bone Homo sapiens conventional 14C 2120±60 BP pfeiffer2020lhc
Beta-433874 bone Homo sapiens AMS 2060±30 BP pfeiffer2020lhc
OxA-2055-46 bone Homo sapiens AMS 2011±30 BP pfeiffer2020lhc
Pta-4376 bone Homo sapiens conventional 14C 2010±50 BP pfeiffer2020lhc
Pta-9073 bone Homo sapiens conventional 14C 1950±60 BP pfeiffer2020lhc
Beta-433876 bone Homo sapiens AMS 1910±30 BP pfeiffer2020lhc

typological date Typological dates (66)

Classification Estimated age References
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA
LSA NA pfeiffer2020lhc
NA NA

Bibliographic reference Bibliographic references

@misc{sealy2004emv,
  
}
@misc{pfeiffer2020lhc,
  
}
@misc{Pienaar M. Woodborne S. and Wadley L. 2008. Optically stimulated luminescence dating at Rose Cottage Cave: research letter.South African Journal of Science104(1-2) pp.65-70.,
  
}
@misc{Pfeiffer S. Sealy J. Harrington L. Loftus E. and Maggs T. 2020. A Late Holocene community burial area: Evidence of diverse mortuary practices in the Western Cape South Africa.Plos one15(4) p.e0230391.,
  
}
@misc{SARD,
  url = {https://github.com/emmaloftus/Southern-African-Radiocarbon-Database},
  note = { Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"sealy2004emv","bibtex_type":"misc"}{"bibtex_key":"pfeiffer2020lhc","bibtex_type":"misc"}{"bibtex_key":"Pienaar M. Woodborne S. and Wadley L. 2008. Optically stimulated luminescence dating at Rose Cottage Cave: research letter.South African Journal of Science104(1-2) pp.65-70.","bibtex_type":"misc"}{"bibtex_key":"Pfeiffer S. Sealy J. Harrington L. Loftus E. and Maggs T. 2020. A Late Holocene community burial area: Evidence of diverse mortuary practices in the Western Cape South Africa.Plos one15(4) p.e0230391.","bibtex_type":"misc"}[{"bibtex_key":"SARD","bibtex_type":"misc","url":"{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}","note":"{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: sealy2004emv
:bibtex_type: :misc
---
:bibtex_key: pfeiffer2020lhc
:bibtex_type: :misc
---
:bibtex_key: 'Pienaar M. Woodborne S. and Wadley L. 2008. Optically stimulated luminescence
  dating at Rose Cottage Cave: research letter.South African Journal of Science104(1-2)
  pp.65-70.'
:bibtex_type: :misc
---
:bibtex_key: 'Pfeiffer S. Sealy J. Harrington L. Loftus E. and Maggs T. 2020. A Late
  Holocene community burial area: Evidence of diverse mortuary practices in the Western
  Cape South Africa.Plos one15(4) p.e0230391.'
:bibtex_type: :misc
---
- :bibtex_key: SARD
  :bibtex_type: :misc
  :url: "{https://github.com/emmaloftus/Southern-African-Radiocarbon-Database}"
  :note: "{ Loftus, E., Mitchell, P., & Ramsey, C. (2019). An archaeological radiocarbon
    database for southern Africa. Antiquity, 93(370), 870-885. doi:10.15184/aqy.2019.75}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog