Site types
Open-air and

Location

100 m
Leaflet Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community
Coordinates (degrees)
048.850° N, 016.700° E
Coordinates (DMS)
048° 51' 00" E, 016° 42' 00" N
Country (ISO 3166)
Czechia (CZ)

radiocarbon date Radiocarbon dates (15)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
GrN-14827 habitat charcoal NA 14C 29400±500 BP 34705–32239 cal BP Valoch 1996a “PACEA Geo-Referenced Radiocarbon Database” 2011
GrN-14826 habitat charcoal NA 14C 29200±950 BP 35291–31420 cal BP Valoch 1996a “PACEA Geo-Referenced Radiocarbon Database” 2011
GrN-14824 habitat charcoal NA 14C 25220±280 BP 30032–28960 cal BP Valoch 1996a “PACEA Geo-Referenced Radiocarbon Database” 2011
ISGS-1690 habitat charcoal NA 14C 22900±490 BP 27930–26008 cal BP Valoch 1996a “PACEA Geo-Referenced Radiocarbon Database” 2011
GrN-14825 habitat charcoal NA 14C 22100±1100 BP 28490–23952 cal BP Valoch 1996a “PACEA Geo-Referenced Radiocarbon Database” 2011
ISGS-1901 habitat charcoal NA 14C 22080±530 BP 27325–25295 cal BP Valoch 1996a “PACEA Geo-Referenced Radiocarbon Database” 2011
GrN-11161 bone NA NA 37450±650 BP 42530–41170 cal BP Vermeersch 2020 Bird et al. 2022
GrN-14825 bone Coelodonta antiquitatis Linty NA NA 22100±1100 BP 28490–23952 cal BP K. Valoch MoravskÔøΩ Museum Institut Anthropos 659-37 Brno CSSR Bird et al. 2022
GrN-14826 charcoal NA NA 29200±950 BP 35291–31420 cal BP Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Armand Colin Paris. Bird et al. 2022
GrN-22104 NA NA 24530±300 BP 29260–27890 cal BP M Oliva - Journal of Human Evolution 1988 A BrugÔøΩre - Quaternary International 2014 - Elsevier Bird et al. 2022
GrN-22105 NA NA 25570±170 BP 30100–29308 cal BP M Oliva - Journal of Human Evolution 1988 A BrugÔøΩre - Quaternary International 2014 - Elsevier Bird et al. 2022
GrN-22106 NA NA 24710±300 BP 29795–28223 cal BP M. Oliva PalÔøΩolithique supÔøΩrieur dans les pays tchÔøΩques: Bilan des travaux 1995-2000 XIV CongrÔøΩs UISPP LiÔøΩge ERAUL 97 59-72 Bird et al. 2022
GrN-22107 NA NA 28780±230 BP 33810–32215 cal BP M. Oliva PalÔøΩolithique supÔøΩrieur dans les pays tchÔøΩques: Bilan des travaux 1995-2000 XIV CongrÔøΩs UISPP LiÔøΩge ERAUL 97 59-72 Bird et al. 2022
GrN-22108 NA NA 32030±370 BP 37110–35560 cal BP Lanting & van der Plicht 1997/1998 Bird et al. 2022
ISGS-1901 NA NA 22080±530 BP 27325–25295 cal BP Coleman and Liu 1975: 169 Bird et al. 2022

typological date Typological dates (11)

Classification Estimated age References
unspec. NA Valoch 1996a
Upper Paleolithic NA Valoch 1996a
Aurignacian NA NA
Upper Paleolithic NA Valoch 1996a
Gravettian NA NA
Upper Paleolithic NA Valoch 1996a
Gravettian NA NA
Upper Paleolithic NA Valoch 1996a
Gravettian NA NA
Upper Paleolithic NA Valoch 1996a
Gravettian NA NA

Bibliographic reference Bibliographic references

@misc{Valoch 1996a,
  
}
@article{Vermeersch2020,
  title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
  author = {Vermeersch, Pierre M},
  year = {2020},
  month = {aug},
  journal = {Data Brief},
  volume = {31},
  pages = {105793},
  issn = {2352-3409},
  doi = {10.1016/j.dib.2020.105793},
  abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
  month_numeric = {8}
}
@misc{K. Valoch MoravskÔøΩ Museum Institut Anthropos 659-37 Brno CSSR,
  
}
@misc{Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Armand Colin Paris.,
  
}
@misc{M Oliva - Journal of Human Evolution 1988 A BrugÔøΩre - Quaternary International 2014 - Elsevier,
  
}
@misc{M. Oliva PalÔøΩolithique supÔøΩrieur dans les pays tchÔøΩques: Bilan des travaux 1995-2000 XIV CongrÔøΩs UISPP LiÔøΩge ERAUL 97 59-72,
  
}
@misc{Lanting & van der Plicht 1997/1998,
  
}
@misc{Coleman and Liu 1975: 169,
  
}
@article{dErricoEtAl2011,
  title = {PACEA Geo-Referenced Radiocarbon Database},
  author = {},
  date = {2011},
  journaltitle = {PaleoAnthropology},
  volume = {2011},
  pages = {1–12},
  abstract = {Numerous Paleolithic radiocarbon databases exist, but their geographic and temporal scopes are diverse and their availability variable. With this paper we make available to the scientific community a georeferenced database of radiocarbon ages for the late Middle Paleolithic, Upper Paleolithic, and initial Holocene in Europe. The PACEA radiocarbon database consists of conventional and AMS 14C age determinations from archaeological sites in Europe that fall within Marine Isotope Stages (MIS) 3–1. In all, we have assembled 6,019 radiocarbon ages (conventional=3,820, AMS=2,176, unspecified=23) from a total of 1,208 sites, along with comprehensive contextual information on the dated samples.},
  keywords = {⛔ No DOI found},
  file = {/home/joeroe/g/work/library/2011/d’Errico_et_al_2011.pdf}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Valoch 1996a","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"K. Valoch MoravskÔøΩ Museum Institut Anthropos 659-37 Brno CSSR","bibtex_type":"misc"}{"bibtex_key":"Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur en Europe. Armand Colin Paris.","bibtex_type":"misc"}{"bibtex_key":"M Oliva - Journal of Human Evolution 1988 A BrugÔøΩre - Quaternary International 2014 - Elsevier","bibtex_type":"misc"}{"bibtex_key":"M. Oliva PalÔøΩolithique supÔøΩrieur dans les pays tchÔøΩques: Bilan des travaux 1995-2000 XIV CongrÔøΩs UISPP LiÔøΩge ERAUL 97 59-72","bibtex_type":"misc"}{"bibtex_key":"Lanting & van der Plicht 1997/1998","bibtex_type":"misc"}{"bibtex_key":"Coleman and Liu 1975: 169","bibtex_type":"misc"}[{"bibtex_key":"dErricoEtAl2011","bibtex_type":"article","title":"{PACEA Geo-Referenced Radiocarbon Database}","author":"{}","date":"{2011}","journaltitle":"{PaleoAnthropology}","volume":"{2011}","pages":"{1–12}","abstract":"{Numerous Paleolithic radiocarbon databases exist, but their geographic and temporal scopes are diverse and their availability variable. With this paper we make available to the scientific community a georeferenced database of radiocarbon ages for the late Middle Paleolithic, Upper Paleolithic, and initial Holocene in Europe. The PACEA radiocarbon database consists of conventional and AMS 14C age determinations from archaeological sites in Europe that fall within Marine Isotope Stages (MIS) 3–1. In all, we have assembled 6,019 radiocarbon ages (conventional=3,820, AMS=2,176, unspecified=23) from a total of 1,208 sites, along with comprehensive contextual information on the dated samples.}","keywords":"{⛔ No DOI found}","file":"{/home/joeroe/g/work/library/2011/d’Errico_et_al_2011.pdf}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Valoch 1996a
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
  :bibtex_type: :article
  :title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
    of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
  :author: "{Vermeersch, Pierre M}"
  :year: "{2020}"
  :month: "{aug}"
  :journal: "{Data Brief}"
  :volume: "{31}"
  :pages: "{105793}"
  :issn: "{2352-3409}"
  :doi: "{10.1016/j.dib.2020.105793}"
  :abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
    Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
    was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
    humaine, Paris). One of the objectives was building a database of the human occupation
    of Europe during this period. The database has been enlarged and now includes
    Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
    conditions and the available chronometric dating. From version 14 on, only sites
    with chronometric data were included. In this database we have collected the available
    radiometric data from literature and from other more restricted databases. We
    try to incorporate newly published chronometric dates, collected from all kind
    of available publications. Only dates older than 9500 uncalibrated BP, correlated
    with a "cultural" level obtained by scientific excavations of European (Asian
    Russian Federation included) Palaeolithic sites, have been included. The dates
    are complemented with information related to cultural remains, stratigraphic,
    sedimentologic and palaeontologic information within a Microsoft Access database.
    For colleagues mainly interested in a list of all chronometric dates an Microsoft
    Excel list (with no details) is available (Tab. 1). A file, containing all sites
    with known coordinates, that can be opened for immediate use in Google Earth is
    available as a *.kmz file. It will give the possibility to introduce (by file
    open) in Google Earth the whole site list in "My Places". The database, version
    27 (first version was available in 2002), contains now 13,202 site forms, (most
    of them with their geographical coordinates), comprising 17,022 radiometric data:
    Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
    and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
    are conventional dates BP. This improved version 27 replaces the older version
    26.}'
  :month_numeric: "{8}"
---
:bibtex_key: K. Valoch MoravskÔøΩ Museum Institut Anthropos 659-37 Brno CSSR
:bibtex_type: :misc
---
:bibtex_key: Djindjian F. J. Kozlowski & M. Otte 1999. Le Paleolithique superieur
  en Europe. Armand Colin Paris.
:bibtex_type: :misc
---
:bibtex_key: M Oliva - Journal of Human Evolution 1988 A BrugÔøΩre - Quaternary International
  2014 - Elsevier
:bibtex_type: :misc
---
:bibtex_key: 'M. Oliva PalÔøΩolithique supÔøΩrieur dans les pays tchÔøΩques: Bilan
  des travaux 1995-2000 XIV CongrÔøΩs UISPP LiÔøΩge ERAUL 97 59-72'
:bibtex_type: :misc
---
:bibtex_key: Lanting & van der Plicht 1997/1998
:bibtex_type: :misc
---
:bibtex_key: 'Coleman and Liu 1975: 169'
:bibtex_type: :misc
---
- :bibtex_key: dErricoEtAl2011
  :bibtex_type: :article
  :title: "{PACEA Geo-Referenced Radiocarbon Database}"
  :author: "{}"
  :date: "{2011}"
  :journaltitle: "{PaleoAnthropology}"
  :volume: "{2011}"
  :pages: "{1–12}"
  :abstract: "{Numerous Paleolithic radiocarbon databases exist, but their geographic
    and temporal scopes are diverse and their availability variable. With this paper
    we make available to the scientific community a georeferenced database of radiocarbon
    ages for the late Middle Paleolithic, Upper Paleolithic, and initial Holocene
    in Europe. The PACEA radiocarbon database consists of conventional and AMS 14C
    age determinations from archaeological sites in Europe that fall within Marine
    Isotope Stages (MIS) 3–1. In all, we have assembled 6,019 radiocarbon ages (conventional=3,820,
    AMS=2,176, unspecified=23) from a total of 1,208 sites, along with comprehensive
    contextual information on the dated samples.}"
  :keywords: "{⛔ No DOI found}"
  :file: "{/home/joeroe/g/work/library/2011/d’Errico_et_al_2011.pdf}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog