Site type

Location

Coordinates (degrees)
029.780° N, 052.900° E
Coordinates (DMS)
029° 46' 00" E, 052° 54' 00" N
Country (ISO 3166)
Iran (IR)

radiocarbon date Radiocarbon dates (12)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
TK-35b bone animal (""organic"") NA 6800±600 BP 8984–6396 cal BP Sato et al. 1969
TK-34 soil black soil NA 8640±120 BP 10143–9432 cal BP Sato et al. 1969
TK-34 soil NA NA 8640±120 BP 10143–9432 cal BP Sato et al. 1969 513 Bird et al. 2022
TK-35a bone NA NA 3610±110 BP 4239–3591 cal BP Sato et al. 1969 513 Bird et al. 2022
TK-35b bone NA NA 6800±600 BP 8984–6396 cal BP Sato et al. 1969 Bird et al. 2022
TKa-13814 charcoal NA NA 7410±35 BP 8334–8175 cal BP Nishiaki 2010 Bird et al. 2022
TKa-13815 charcoal NA NA 7455±35 BP 8345–8190 cal BP Nishiaki 2010 Bird et al. 2022
TKa-13816 charcoal NA NA 7420±40 BP 8340–8177 cal BP Nishiaki 2010 Bird et al. 2022
TKa-13817 charcoal NA NA 7425±35 BP 8335–8181 cal BP Nishiaki 2010 Bird et al. 2022
TKa-13818 charcoal NA NA 7370±30 BP 8316–8037 cal BP Nishiaki 2010 Bird et al. 2022
TKa-13819 charcoal NA NA 7370±35 BP 8319–8036 cal BP Nishiaki 2010 Bird et al. 2022
TKa-13820 charcoal NA NA 7330±35 BP 8185–8031 cal BP Nishiaki 2010 Bird et al. 2022

typological date Typological dates (2)

Classification Estimated age References
CH NA Sato et al. 1969
PN NA Sato et al. 1969

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Sato et al. 1969]
  • No bibliographic information available. [Sato et al. 1969 513]
  • No bibliographic information available. [Nishiaki 2010]
  • http://context-database.uni-koeln.de/index.php [CONTEXT]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Sato et al. 1969,
  
}
@misc{Sato et al. 1969 513,
  
}
@misc{Nishiaki 2010,
  
}
@misc{CONTEXT,
  url = {http://context-database.uni-koeln.de/index.php},
  note = {Schyle, D. & Böhner, U. 2006. Near Eastern radiocarbon CONTEXT database. https://doi.org/10.1594/GFZ.CONTEXT.ED1}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Sato et al. 1969","bibtex_type":"misc"}{"bibtex_key":"Sato et al. 1969 513","bibtex_type":"misc"}{"bibtex_key":"Nishiaki 2010","bibtex_type":"misc"}[{"bibtex_key":"CONTEXT","bibtex_type":"misc","url":"{http://context-database.uni-koeln.de/index.php}","note":"{Schyle, D. & Böhner, U. 2006. Near Eastern radiocarbon CONTEXT database. https://doi.org/10.1594/GFZ.CONTEXT.ED1}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Sato et al. 1969
:bibtex_type: :misc
---
:bibtex_key: Sato et al. 1969 513
:bibtex_type: :misc
---
:bibtex_key: Nishiaki 2010
:bibtex_type: :misc
---
- :bibtex_key: CONTEXT
  :bibtex_type: :misc
  :url: "{http://context-database.uni-koeln.de/index.php}"
  :note: "{Schyle, D. & Böhner, U. 2006. Near Eastern radiocarbon CONTEXT database.
    https://doi.org/10.1594/GFZ.CONTEXT.ED1}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog