Site types
Settlement and

Location

Coordinates (degrees)
041.909° N, 016.136° E
Coordinates (DMS)
041° 54' 00" E, 016° 08' 00" N
Country (ISO 3166)
Italy (IT)

radiocarbon date Radiocarbon dates (25)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Beta-171118 NA NA 3320±80 BP 3820–3376 cal BP Moroni Lanfredini and Benvenuti 2010 Palmisano et al. 2022
LTL-1727A NA NA 6277±45 BP 7280–7022 cal BP Fiorentino et al. 2013 Palmisano et al. 2022
OxA-1851 Impressa grain Triticum aestivum compactum NA 6270±70 BP 7408–6990 cal BP Hedges et al. 1990 Palmisano et al. 2022
OxA-1852 Impressa seed Vitis NA 6245±90 BP 7416–6900 cal BP Hedges et al. 1990 Palmisano et al. 2022
OxA-1853 Impressa grain Triticum aestivum NA 6430±80 BP 7483–7166 cal BP Hedges et al. 1990 Palmisano et al. 2022
OxA-1854 Impressa grain Hordeum vulgare NA 6120±90 BP 7250–6749 cal BP Hedges et al. 1990 Palmisano et al. 2022
OxA-1855 Impressa bone Ovis NA 5750±70 BP 6730–6397 cal BP Hedges et al. 1990 Palmisano et al. 2022
/c14s/13040 NA NA 6277±45 BP 7280–7022 cal BP Tarantini and Galimberti 2011 Palmisano et al. 2022
/c14s/13171 NA NA 4705±63 BP 5580–5317 cal BP Tinè and Tusa 2012 Palmisano et al. 2022
/c14s/13172 NA NA 4960±160 BP 6170–5318 cal BP Tinè and Tusa 2012 Palmisano et al. 2022
/c14s/13173 NA NA 4970±144 BP 6103–5325 cal BP Tinè and Tusa 2012 Palmisano et al. 2022
/c14s/13174 NA NA 5315±181 BP 6444–5658 cal BP Tinè and Tusa 2012 Palmisano et al. 2022
/c14s/13175 NA NA 5620±155 BP 6776–6007 cal BP Tinè and Tusa 2012 Palmisano et al. 2022
/c14s/13176 NA NA 6335±192 BP 7575–6788 cal BP Tinè and Tusa 2012 Palmisano et al. 2022
OxA-1851 seed/fruit Triticum aestivum compactum 14C 6270±70 BP 7408–6990 cal BP Carvalho 2008 Weninger 2022
OxA-1852 seed/fruit Vitis 14C 6245±90 BP 7416–6900 cal BP biagi 2002 Weninger 2022
OxA-1853 seed/fruit Triticum aestivum 14C 6430±80 BP 7483–7166 cal BP Carvalho 2008 Weninger 2022
OxA-1854 seed/fruit Hordeum 14C 6120±90 BP 7250–6749 cal BP Carvalho 2008 Weninger 2022
OxA-1855 bone Bovidae 14C 5750±70 BP 6730–6397 cal BP Weninger 2022
OxA-1855 SMN 15 111-113E collagen, bone sheep/goat NA 5750±70 BP 6730–6397 cal BP Hinz et al. 2012

typological date Typological dates (10)

Classification Estimated age References
Impressa NA NA
Impressa NA NA
Impressa NA NA
Impressa NA NA
Impressa NA NA
Neolithic NA NA
Neolithic NA Carvalho 2008
Neolithic NA biagi 2002
Neolithic NA Carvalho 2008
Neolithic NA Carvalho 2008

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Moroni Lanfredini and Benvenuti 2010]
  • No bibliographic information available. [Fiorentino et al. 2013]
  • No bibliographic information available. [Hedges et al. 1990]
  • No bibliographic information available. [Tarantini and Galimberti 2011]
  • No bibliographic information available. [Tinè and Tusa 2012]
  • No bibliographic information available. [Carvalho 2008]
  • No bibliographic information available. [biagi 2002]
  • No bibliographic information available. [Broglio A. 2006. ERAUL 115: 105-110. Peresani 2005]
  • Palmisano, A., Bevan, A., Kabelindde, A., Roberts, N., & Shennan, S. (2022). AIDA: Archive of Italian Radiocarbon Dates (Version 5.0) [Data set]. https://github.com/apalmisano82/AIDA [AIDA]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Hinz, M., Furholt, M., Müller, J., Raetzel-Fabian, D., Rinne, C., Sjögren, K.-G., & Wotzka, H.-P. (2012). RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age. Journal of Neolithic Archaeology, 14, 1–4. https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116 [RADON]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Moroni Lanfredini and Benvenuti 2010,
  
}
@misc{Fiorentino et al. 2013,
  
}
@misc{Hedges et al. 1990,
  
}
@misc{Tarantini and Galimberti 2011,
  
}
@misc{Tinè and Tusa 2012,
  
}
@misc{Carvalho 2008,
  
}
@misc{biagi 2002,
  
}
@misc{Broglio A.  2006. ERAUL 115: 105-110. Peresani  2005,
  
}
@dataset{AIDA,
  title = {AIDA: Archive of Italian Radiocarbon Dates},
  author = {Palmisano, Alessio and Bevan, Andrew and Kabelindde, A. and Roberts, N. and Shennan, S.},
  date = {2022-04-09},
  url = {https://github.com/apalmisano82/AIDA},
  version = {5.0}
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{RADON,
  title = {RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.},
  author = {Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter},
  date = {2012},
  journaltitle = {Journal of Neolithic Archaeology},
  volume = {14},
  pages = {1–4},
  url = {https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116},
  abstract = {In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Moroni Lanfredini and Benvenuti 2010","bibtex_type":"misc"}{"bibtex_key":"Fiorentino et al. 2013","bibtex_type":"misc"}{"bibtex_key":"Hedges et al. 1990","bibtex_type":"misc"}{"bibtex_key":"Tarantini and Galimberti 2011","bibtex_type":"misc"}{"bibtex_key":"Tinè and Tusa 2012","bibtex_type":"misc"}{"bibtex_key":"Carvalho 2008","bibtex_type":"misc"}{"bibtex_key":"biagi 2002","bibtex_type":"misc"}{"bibtex_key":"Broglio A.  2006. ERAUL 115: 105-110. Peresani  2005","bibtex_type":"misc"}[{"bibtex_key":"AIDA","bibtex_type":"dataset","title":"{AIDA: Archive of Italian Radiocarbon Dates}","author":"{Palmisano, Alessio and Bevan, Andrew and Kabelindde, A. and Roberts, N. and Shennan, S.}","date":"{2022-04-09}","url":"{https://github.com/apalmisano82/AIDA}","version":"{5.0}"}][{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"RADON","bibtex_type":"article","title":"{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.}","author":"{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}","date":"{2012}","journaltitle":"{Journal of Neolithic Archaeology}","volume":"{14}","pages":"{1–4}","url":"{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}","abstract":"{In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Moroni Lanfredini and Benvenuti 2010
:bibtex_type: :misc
---
:bibtex_key: Fiorentino et al. 2013
:bibtex_type: :misc
---
:bibtex_key: Hedges et al. 1990
:bibtex_type: :misc
---
:bibtex_key: Tarantini and Galimberti 2011
:bibtex_type: :misc
---
:bibtex_key: Tinè and Tusa 2012
:bibtex_type: :misc
---
:bibtex_key: Carvalho 2008
:bibtex_type: :misc
---
:bibtex_key: biagi 2002
:bibtex_type: :misc
---
:bibtex_key: 'Broglio A.  2006. ERAUL 115: 105-110. Peresani  2005'
:bibtex_type: :misc
---
- :bibtex_key: AIDA
  :bibtex_type: :dataset
  :title: "{AIDA: Archive of Italian Radiocarbon Dates}"
  :author: "{Palmisano, Alessio and Bevan, Andrew and Kabelindde, A. and Roberts,
    N. and Shennan, S.}"
  :date: "{2022-04-09}"
  :url: "{https://github.com/apalmisano82/AIDA}"
  :version: "{5.0}"
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: RADON
  :bibtex_type: :article
  :title: "{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C
    Dates for the Neolithic and the Early Bronze Age.}"
  :author: "{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian,
    Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}"
  :date: "{2012}"
  :journaltitle: "{Journal of Neolithic Archaeology}"
  :volume: "{14}"
  :pages: "{1–4}"
  :url: "{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}"
  :abstract: "{In order to understand the dynamics of cultural phenomena, scientific
    dating in archaeology is an increasingly indispensable tool. Only by dating independently
    of typology is it possible to understand typological development itself (Müller
    2004). Here radiometric dating methods, especially those based on carbon isotopy,
    still play the most important role. For evaluations exceeding the intra-site level,
    it is particularly important that such data is collected in large numbers and
    that the dates are easily accessible. Also, new statistical analyses, such as
    sequential calibration based on Bayesian methods, do not require single dates,
    but rather demand a greater number. By their combination significantly more elaborate
    results can be achieved compared to the results from conventional evaluation (e.
    g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This
    approach continues to be applied in the international research community, which
    we welcome as a highly positive development. The radiocarbon database RADON has
    been committed to this principle for more than 12 years. In this database 14C
    data – primarily of the Neolithic of Central Europe and Southern Scandinavia –
    is collected and successively augmented.}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog