Site types
Se anatolia, settlement, and

Location

Coordinates (degrees)
036.996° N, 037.978° E
Coordinates (DMS)
036° 59' 00" E, 037° 58' 00" N
Country (ISO 3166)
Türkiye (TR)

radiocarbon date Radiocarbon dates (54)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
AA-37091 charcoal Fabaceae 14C 6932±55 BP Tay Weninger 2022
AA-37092 charcoal Fabaceae 14C 6935±60 BP Tay Weninger 2022
AA-37093 charcoal Fabaceae 14C 6995±50 BP Tay Weninger 2022
AA-37094 charcoal Rosaceae 14C 6950±55 BP Tay Weninger 2022
AA-37095 charcoal NA 14C 6840±45 BP Tay Weninger 2022
AA-37096 charcoal Fabaceae 14C 7020±45 BP Tay Weninger 2022
AA-37097 charcoal Fabaceae 14C 6912±55 BP Tay Weninger 2022
AA-40370 charcoal Triticum 14C 7004±57 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40371 charcoal Pistacia 14C 6461±67 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40372 charcoal Ononis 14C 6738±55 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40374 charcoal Angiosperm 14C 6936±48 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40376 charcoal Triticum 14C 6862±62 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40377 charcoal Pinus 14C 6470±100 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40378 charcoal Calicotome 14C 6800±48 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40379 charcoal Pistacia 14C 6934±48 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40380 charcoal Rosaceae 14C 6903±48 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40381 charcoal Rosaceae 14C 6861±48 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-40382 charcoal Pistacia 14C 6853±48 BP Bernbeck and Pollock 1999, TAY, CalPal Weninger 2022
AA-37091 3B Unit B; IIIa (B3B); Unit B, locus 114.4, RN 5474, midden charcoal Fabaceae NA 6932±55 BP Bernbeck and Pollock 2003; CalPal; Flohr et al. 2016 Palmisano et al. 2022
AA-37092 3C Unit C; IIIa (B3C); Unit B, locus 103.6, RN 5406, midden charcoal Fabaceae NA 6935±60 BP Bernbeck and Pollock 2003; CalPal; Flohr et al. 2016 Palmisano et al. 2022

typological date Typological dates (36)

Classification Estimated age References
Neolithic NA Tay
Halaf NA NA
Neolithic NA Tay
Halaf NA NA
Neolithic NA Tay
Halaf NA NA
Neolithic NA Tay
Halaf NA NA
Neolithic NA Tay
Halaf NA NA
Neolithic NA Tay
Halaf NA NA
Neolithic NA Tay
Halaf NA NA
Neolithic NA Bernbeck and Pollock 1999, TAY, CalPal
Halaf NA NA
Neolithic NA Bernbeck and Pollock 1999, TAY, CalPal
Halaf NA NA
Neolithic NA Bernbeck and Pollock 1999, TAY, CalPal
Halaf NA NA

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Tay]
  • No bibliographic information available. [Bernbeck and Pollock 1999, TAY, CalPal]
  • No bibliographic information available. [Bernbeck and Pollock 2003; CalPal; Flohr et al. 2016]
  • No bibliographic information available. [Bernbeck and Pollock 2003; Flohr et al. 2016]
  • No bibliographic information available. [Bernbeck and Pollock 2003]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Palmisano, A., Bevan, A., Lawrence, D., & Shennan, S. (2022). The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP. 10(0), 2. https://doi.org/10.5334/joad.90 [NERD]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Tay,
  
}
@misc{Bernbeck and Pollock 1999, TAY, CalPal,
  
}
@misc{Bernbeck and Pollock 2003; CalPal; Flohr et al. 2016,
  
}
@misc{Bernbeck and Pollock 2003; Flohr et al. 2016,
  
}
@misc{Bernbeck and Pollock 2003,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{NERD,
  title = {The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP},
  shorttitle = {The NERD Dataset},
  author = {Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen},
  date = {2022-02-22},
  volume = {10},
  number = {0},
  pages = {2},
  publisher = {Ubiquity Press},
  issn = {2049-1565},
  doi = {10.5334/joad.90},
  url = {https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90},
  urldate = {2023-09-07},
  abstract = {To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.},
  issue = {0},
  langid = {american},
  file = {/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Tay","bibtex_type":"misc"}{"bibtex_key":"Bernbeck and Pollock 1999, TAY, CalPal","bibtex_type":"misc"}{"bibtex_key":"Bernbeck and Pollock 2003; CalPal; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Bernbeck and Pollock 2003; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Bernbeck and Pollock 2003","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"NERD","bibtex_type":"article","title":"{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP}","shorttitle":"{The NERD Dataset}","author":"{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}","date":"{2022-02-22}","volume":"{10}","number":"{0}","pages":"{2}","publisher":"{Ubiquity Press}","issn":"{2049-1565}","doi":"{10.5334/joad.90}","url":"{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}","urldate":"{2023-09-07}","abstract":"{To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.}","issue":"{0}","langid":"{american}","file":"{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Tay
:bibtex_type: :misc
---
:bibtex_key: Bernbeck and Pollock 1999, TAY, CalPal
:bibtex_type: :misc
---
:bibtex_key: Bernbeck and Pollock 2003; CalPal; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Bernbeck and Pollock 2003; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Bernbeck and Pollock 2003
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: NERD
  :bibtex_type: :article
  :title: "{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500
    Cal. Yr. BP}"
  :shorttitle: "{The NERD Dataset}"
  :author: "{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}"
  :date: "{2022-02-22}"
  :volume: "{10}"
  :number: "{0}"
  :pages: "{2}"
  :publisher: "{Ubiquity Press}"
  :issn: "{2049-1565}"
  :doi: "{10.5334/joad.90}"
  :url: "{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}"
  :urldate: "{2023-09-07}"
  :abstract: "{To our knowledge, the dataset described in this paper represents the
    largest existing repository of uncalibrated radiocarbon dates for the whole Near
    East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP).
    It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected
    comprehensively by cross-checking multiple sources (extant digital archives and
    databases, edited volumes, monographs, journals papers, archaeological excavation
    reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing
    the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape,
    Settlement and Society: Exploring Human-Environment Interaction in the Ancient
    Near East”. This is an ongoing dataset that will be updated step by step with
    newly published radiocarbon dates.}"
  :issue: "{0}"
  :langid: "{american}"
  :file: "{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog