Cova de la Guineu
Archaeological site
in Spain
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Location
- Coordinates (degrees)
- 041.772° N, 001.615° E
- Coordinates (DMS)
- 041° 46' 00" E, 001° 36' 00" N
- Country (ISO 3166)
- Spain (ES)
Linked Data
There is no linked data available for this record.
Lab ID | Context | Material | Taxon | Method | Uncalibrated age | Calibrated age | References |
---|---|---|---|---|---|---|---|
Beta-378799 | charcoal | NA | 14C | 10590±40 BP | 12706–12492 cal BP | Bergadà 2017 Weninger 2022 | |
Beta-406997 | tooth | Bovidae | 14C | 5430±30 BP | 6290–6197 cal BP | Bergadà 2017 Weninger 2022 | |
Beta-406998 | charcoal | Laurus nobilis | 14C | 6140±30 BP | 7158–6947 cal BP | Bergadà 2017 Weninger 2022 | |
Gif-10027 | charcoal | NA | 14C | 2830±80 BP | 3160–2770 cal BP | Capuzzo, Boaretto, and Barceló 2014 Weninger 2022 | |
Gif-11037 | charcoal | NA | 14C | 5480±60 BP | 6400–6120 cal BP | Bergadà 2017 Weninger 2022 | |
Gif-8439 | charcoal | NA | 14C | 9850±80 BP | 11613–11110 cal BP | Bergadà 2017 Weninger 2022 | |
GifA-99113 | charcoal | NA | 14C | 5480±80 BP | 6442–6005 cal BP | Bergadà 2017 Weninger 2022 | |
GifA-99114 | charcoal | NA | 14C | 5580±70 BP | 6530–6212 cal BP | Bergadà 2017 Weninger 2022 | |
OxA-29605 | tooth | Bovidae | 14C | 5274±32 BP | 6180–5940 cal BP | Bergadà 2017 Weninger 2022 | |
Gif-10027 | Nivel Ic, E9, n. 537 | Carbón | NA | NA | 2830±80 BP | 3160–2770 cal BP | BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992. Datación inédita (J. Mestres) |
UBAR-258 | Nivel Ib | Carbón | NA | NA | 3280±70 BP | 3689–3365 cal BP | BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992. EQUIP GUINEU 1994. CEBRIÀ A., BARTROLÍ R. 1997. CEBRIÀ A. 2000. MARTÍN A., MESTRES J. S. 2002, p. 117. |
Gif-8439 | Residencial; IIIa | charcoal | NA | NA | 9850±80 BP | 11613–11110 cal BP | Bartrolí et al. 1992a Hinz et al. 2012 |
UBAR-258 | Residencial; Nivell Ib; Hàbitat en cova | charcoal | NA | NA | 2380±70 BP | 2710–2184 cal BP | Kneisel, Hinz, and Rinne 2014 |
Gif-10027 | Residencial; Nivell Ic, E9, n. 537; Cova | charcoal | NA | NA | 2830±80 BP | 3160–2770 cal BP | Kneisel, Hinz, and Rinne 2014 |
OxA-10800 | collagen, bone | Human bone, layer Ic interior | NA | 4500±40 BP | 5306–4985 cal BP | Soriano/Gibaja/Vila 2015, 160 Kneisel, Hinz, and Rinne 2014 | |
Beta-378799 | charcoal | NA | NA | 10590±40 BP | 12706–12492 cal BP | Vermeersch 2020 Bird et al. 2022 | |
Beta-406997 | tooth | NA | NA | 5430±30 BP | 6290–6197 cal BP | BergadÔøΩ 2017 Bird et al. 2022 | |
Beta-406998 | charcoal | NA | NA | 6140±30 BP | 7158–6947 cal BP | Lyman 2001 Bird et al. 2022 | |
Gif-10027 | charcoal | NA | NA | 2830±80 BP | 3160–2770 cal BP | RADON-B Bird et al. 2022 | |
Gif-11037 | charcoal | NA | NA | 5480±60 BP | 6400–6120 cal BP | Tenorio 1998 Bird et al. 2022 |
Classification | Estimated age | References |
---|---|---|
Epipalaeolithic | NA | Bergadà 2017 |
Neolithic | NA | Bergadà 2017 |
Neolithic | NA | Bergadà 2017 |
Cardial | NA | NA |
Bronze Age | NA | Capuzzo, Boaretto, and Barceló 2014 |
Neolithic | NA | Bergadà 2017 |
Postcardial | NA | NA |
Epipalaeolithic | NA | Bergadà 2017 |
Neolithic | NA | Bergadà 2017 |
Postcardial | NA | NA |
Neolithic | NA | Bergadà 2017 |
Postcardial | NA | NA |
Neolithic | NA | Bergadà 2017 |
Mesolithikum | NA | Bartrolí et al. 1992a |
Bronze Antic/Bronze Mig | NA | NA |
Early Bronze Age | NA | NA |
Bronze final A | NA | NA |
Late Bronze Age | NA | NA |
Bibliographic references
- No bibliographic information available. [Bergadà 2017]
- Capuzzo, G., Boaretto, E., & Barceló, J. A. (2014). EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France. Radiocarbon, 56(2), 851–869. https://doi.org/10.2458/56.17453 [EUBAR]
- No bibliographic information available. [BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992. Datación inédita (J. Mestres)]
- No bibliographic information available. [BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992. EQUIP GUINEU 1994. CEBRIÀ A., BARTROLÍ R. 1997. CEBRIÀ A. 2000. MARTÍN A., MESTRES J. S. 2002, p. 117.]
- No bibliographic information available. [Bartrolí et al. 1992a]
- No bibliographic information available. [Soriano/Gibaja/Vila 2015, 160]
- Vermeersch, P. M. (2020). Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included. Data Brief, 31, 105793. https://doi.org/10.1016/j.dib.2020.105793 [Vermeersch 2020]
- No bibliographic information available. [BergadÔøΩ 2017]
- No bibliographic information available. [Lyman 2001]
- No bibliographic information available. [RADON-B]
- No bibliographic information available. [Tenorio 1998]
- No bibliographic information available. [Beucher F. 1962. Bull. S.P.F. nÔøΩ7-8 :568-573 Samsel M. BMSAP (2016) 28:213-220 Fosse F. 2017 Paleo 28: 91-115]
- No bibliographic information available. [Soriano/Gibaja/Vila 2015 160]
- No bibliographic information available. [Peltenburg 1988 13]
- Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
- https://telearchaeology.org/EUBAR/ [EUBAR]
- Hinz, M., Furholt, M., Müller, J., Raetzel-Fabian, D., Rinne, C., Sjögren, K.-G., & Wotzka, H.-P. (2012). RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age. Journal of Neolithic Archaeology, 14, 1–4. https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116 [RADON]
- Kneisel, J., Hinz, M., & Rinne, C. (2014). RADON-B – Radiocarbon Dates Online (Version 2014). Database for European 14C Dates for the Bronze and Early Iron Age [Data set]. https://radon-b.ufg.uni-kiel.de [RADON-B]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Bergadà 2017,
}
@article{CapuzzoEtAl2014,
title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
shorttitle = {EUBAR},
author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
year = {2014},
month = {jan},
journal = {Radiocarbon},
volume = {56},
number = {2},
pages = {851–869},
issn = {0033-8222, 1945-5755},
doi = {10.2458/56.17453},
abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
langid = {english},
month_numeric = {1}
}
@misc{BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992.
Datación inédita (J. Mestres),
}
@misc{BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992.
EQUIP GUINEU 1994.
CEBRIÀ A., BARTROLÍ R. 1997.
CEBRIÀ A. 2000.
MARTÍN A., MESTRES J. S. 2002, p. 117.,
}
@misc{Bartrolí et al. 1992a,
}
@misc{Soriano/Gibaja/Vila 2015, 160,
}
@article{Vermeersch2020,
title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
author = {Vermeersch, Pierre M},
year = {2020},
month = {aug},
journal = {Data Brief},
volume = {31},
pages = {105793},
issn = {2352-3409},
doi = {10.1016/j.dib.2020.105793},
abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
month_numeric = {8}
}
@misc{BergadÔøΩ 2017,
}
@misc{Lyman 2001,
}
@misc{RADON-B,
}
@misc{Tenorio 1998,
}
@misc{Beucher F. 1962. Bull. S.P.F. nÔøΩ7-8 :568-573 Samsel M. BMSAP (2016) 28:213-220 Fosse F. 2017 Paleo 28: 91-115,
}
@misc{Soriano/Gibaja/Vila 2015 160,
}
@misc{Peltenburg 1988 13,
}
@misc{CalPal,
title = {CalPal Edition 2022.9},
author = {Weninger, Bernie},
year = {2022},
month = {sep},
doi = {1010.5281/zenodo.7422618},
url = {https://zenodo.org/record/7422618},
abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
copyright = {Creative Commons Attribution 4.0 International, Open Access},
howpublished = {Zenodo},
month_numeric = {9}
}
@misc{EUBAR,
url = {https://telearchaeology.org/EUBAR/},
note = {CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}
}
@article{RADON,
title = {RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.},
author = {Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter},
date = {2012},
journaltitle = {Journal of Neolithic Archaeology},
volume = {14},
pages = {1–4},
url = {https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116},
abstract = {In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}
}
@dataset{RADON-B,
title = {RADON-B – Radiocarbon Dates Online (Version 2014). Database for European 14C Dates for the Bronze and Early Iron Age},
author = {Kneisel, Jutta and Hinz, Martin and Rinne, Christophe},
date = {2014},
url = {https://radon-b.ufg.uni-kiel.de},
abstract = {The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
{"bibtex_key":"Bergadà 2017","bibtex_type":"misc"}[{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}]{"bibtex_key":"BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992.\r\nDatación inédita (J. Mestres)","bibtex_type":"misc"}{"bibtex_key":"BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992.\r\nEQUIP GUINEU 1994.\r\nCEBRIÀ A., BARTROLÍ R. 1997.\r\nCEBRIÀ A. 2000.\r\nMARTÍN A., MESTRES J. S. 2002, p. 117.","bibtex_type":"misc"}{"bibtex_key":"Bartrolí et al. 1992a","bibtex_type":"misc"}{"bibtex_key":"Soriano/Gibaja/Vila 2015, 160","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"BergadÔøΩ 2017","bibtex_type":"misc"}{"bibtex_key":"Lyman 2001","bibtex_type":"misc"}{"bibtex_key":"RADON-B","bibtex_type":"misc"}{"bibtex_key":"Tenorio 1998","bibtex_type":"misc"}{"bibtex_key":"Beucher F. 1962. Bull. S.P.F. nÔøΩ7-8 :568-573 Samsel M. BMSAP (2016) 28:213-220 Fosse F. 2017 Paleo 28: 91-115","bibtex_type":"misc"}{"bibtex_key":"Soriano/Gibaja/Vila 2015 160","bibtex_type":"misc"}{"bibtex_key":"Peltenburg 1988 13","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"EUBAR","bibtex_type":"misc","url":"{https://telearchaeology.org/EUBAR/}","note":"{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"}][{"bibtex_key":"RADON","bibtex_type":"article","title":"{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.}","author":"{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}","date":"{2012}","journaltitle":"{Journal of Neolithic Archaeology}","volume":"{14}","pages":"{1–4}","url":"{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}","abstract":"{In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}"}][{"bibtex_key":"RADON-B","bibtex_type":"dataset","title":"{RADON-B – Radiocarbon Dates Online (Version 2014). Database for European 14C Dates for the Bronze and Early Iron Age}","author":"{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}","date":"{2014}","url":"{https://radon-b.ufg.uni-kiel.de}","abstract":"{The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Bergadà 2017
:bibtex_type: :misc
---
- :bibtex_key: CapuzzoEtAl2014
:bibtex_type: :article
:title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
France}"
:shorttitle: "{EUBAR}"
:author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
:year: "{2014}"
:month: "{jan}"
:journal: "{Radiocarbon}"
:volume: "{56}"
:number: "{2}"
:pages: "{851–869}"
:issn: "{0033-8222, 1945-5755}"
:doi: "{10.2458/56.17453}"
:abstract: "{The chronological framework of European protohistory is mostly a relative
chronology based on typology and stratigraphic data. Synchronization of different
time periods suffers from a lack of absolute dates; therefore, disagreements between
different chronological schemes are difficult to reconcile. An alternative approach
was applied in this study to build a more precise and accurate absolute chronology.
To the best of our knowledge, we have collected all the published 14C dates for
the archaeological sites in the region from the Ebro River (Spain) to the Middle
Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
information associated with the 14C dates was organized in a database that totaled
more than 1600 14C dates. In order to build an accurate and precise chronology,
quality selection rules have been applied to the 14C dates based on both archaeological
context and analytical quality. Using the OxCal software and Bayesian analysis,
several 14C time sequences were created following the archaeological data and
different possible scenarios were tested in northern Italy and southern France.}"
:langid: "{english}"
:month_numeric: "{1}"
---
:bibtex_key: "BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992.\r\nDatación inédita
(J. Mestres)"
:bibtex_type: :misc
---
:bibtex_key: "BARTROLÍ R., CEBRIÀ A., MESTRES J., RIBÉ G. 1992.\r\nEQUIP GUINEU 1994.\r\nCEBRIÀ
A., BARTROLÍ R. 1997.\r\nCEBRIÀ A. 2000.\r\nMARTÍN A., MESTRES J. S. 2002, p. 117."
:bibtex_type: :misc
---
:bibtex_key: Bartrolí et al. 1992a
:bibtex_type: :misc
---
:bibtex_key: Soriano/Gibaja/Vila 2015, 160
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
:bibtex_type: :article
:title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
:author: "{Vermeersch, Pierre M}"
:year: "{2020}"
:month: "{aug}"
:journal: "{Data Brief}"
:volume: "{31}"
:pages: "{105793}"
:issn: "{2352-3409}"
:doi: "{10.1016/j.dib.2020.105793}"
:abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
humaine, Paris). One of the objectives was building a database of the human occupation
of Europe during this period. The database has been enlarged and now includes
Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
conditions and the available chronometric dating. From version 14 on, only sites
with chronometric data were included. In this database we have collected the available
radiometric data from literature and from other more restricted databases. We
try to incorporate newly published chronometric dates, collected from all kind
of available publications. Only dates older than 9500 uncalibrated BP, correlated
with a "cultural" level obtained by scientific excavations of European (Asian
Russian Federation included) Palaeolithic sites, have been included. The dates
are complemented with information related to cultural remains, stratigraphic,
sedimentologic and palaeontologic information within a Microsoft Access database.
For colleagues mainly interested in a list of all chronometric dates an Microsoft
Excel list (with no details) is available (Tab. 1). A file, containing all sites
with known coordinates, that can be opened for immediate use in Google Earth is
available as a *.kmz file. It will give the possibility to introduce (by file
open) in Google Earth the whole site list in "My Places". The database, version
27 (first version was available in 2002), contains now 13,202 site forms, (most
of them with their geographical coordinates), comprising 17,022 radiometric data:
Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
are conventional dates BP. This improved version 27 replaces the older version
26.}'
:month_numeric: "{8}"
---
:bibtex_key: BergadÔøΩ 2017
:bibtex_type: :misc
---
:bibtex_key: Lyman 2001
:bibtex_type: :misc
---
:bibtex_key: RADON-B
:bibtex_type: :misc
---
:bibtex_key: Tenorio 1998
:bibtex_type: :misc
---
:bibtex_key: 'Beucher F. 1962. Bull. S.P.F. nÔøΩ7-8 :568-573 Samsel M. BMSAP (2016)
28:213-220 Fosse F. 2017 Paleo 28: 91-115'
:bibtex_type: :misc
---
:bibtex_key: Soriano/Gibaja/Vila 2015 160
:bibtex_type: :misc
---
:bibtex_key: Peltenburg 1988 13
:bibtex_type: :misc
---
- :bibtex_key: CalPal
:bibtex_type: :misc
:title: "{CalPal Edition 2022.9}"
:author: "{Weninger, Bernie}"
:year: "{2022}"
:month: "{sep}"
:doi: "{1010.5281/zenodo.7422618}"
:url: "{https://zenodo.org/record/7422618}"
:abstract: "{CalPal is scientific freeware for 14C-based chronological research
for Holocene and Palaeolithic Archaeology.}"
:copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
:howpublished: "{Zenodo}"
:month_numeric: "{9}"
---
- :bibtex_key: EUBAR
:bibtex_type: :misc
:url: "{https://telearchaeology.org/EUBAR/}"
:note: "{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements
for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts
from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"
---
- :bibtex_key: RADON
:bibtex_type: :article
:title: "{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C
Dates for the Neolithic and the Early Bronze Age.}"
:author: "{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian,
Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}"
:date: "{2012}"
:journaltitle: "{Journal of Neolithic Archaeology}"
:volume: "{14}"
:pages: "{1–4}"
:url: "{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}"
:abstract: "{In order to understand the dynamics of cultural phenomena, scientific
dating in archaeology is an increasingly indispensable tool. Only by dating independently
of typology is it possible to understand typological development itself (Müller
2004). Here radiometric dating methods, especially those based on carbon isotopy,
still play the most important role. For evaluations exceeding the intra-site level,
it is particularly important that such data is collected in large numbers and
that the dates are easily accessible. Also, new statistical analyses, such as
sequential calibration based on Bayesian methods, do not require single dates,
but rather demand a greater number. By their combination significantly more elaborate
results can be achieved compared to the results from conventional evaluation (e.
g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This
approach continues to be applied in the international research community, which
we welcome as a highly positive development. The radiocarbon database RADON has
been committed to this principle for more than 12 years. In this database 14C
data – primarily of the Neolithic of Central Europe and Southern Scandinavia –
is collected and successively augmented.}"
---
- :bibtex_key: RADON-B
:bibtex_type: :dataset
:title: "{RADON-B – Radiocarbon Dates Online (Version 2014). Database for European
14C Dates for the Bronze and Early Iron Age}"
:author: "{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}"
:date: "{2014}"
:url: "{https://radon-b.ufg.uni-kiel.de}"
:abstract: "{The database provides a quick overview of 14C dates from Europe. The
time frame was limited to the Bronze and Early Iron Ages and covers the period
from 2300 BC to 500 BC. The database can be searched by geographic or chronological
factors, but also according to the nature of the sample material, the sites or
features. The data and related information were taken from the literature cited
in each case, and due to the timing of phases and culture assignment, are subject
to change. We therefore assume no responsibility for the accuracy of source data.}"
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"