Site type

Location

Coordinates (degrees)
042.568° N, 002.554° W
Coordinates (DMS)
042° 34' 00" W, 002° 33' 00" N
Country (ISO 3166)
Spain (ES)

radiocarbon date Radiocarbon dates (15)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Beta-288933 bone Homo sapiens C14 4380±40 BP Balsera Weninger 2022
Beta-288934 bone Homo sapiens C14 4480±40 BP Balsera Weninger 2022
Beta-288935 bone Homo sapiens C14 4670±40 BP Balsera Weninger 2022
Beta-288936 bone Homo sapiens C14 3280±40 BP Balsera Weninger 2022
Beta-288937 bone Homo sapiens C14 4440±40 BP Balsera Weninger 2022
Beta-288938 bone Homo sapiens C14 4650±40 BP Balsera Weninger 2022
Beta-288939 bone Homo sapiens C14 4430±40 BP Balsera Weninger 2022
Beta-307795 bone Homo sapiens C14 4940±30 BP Balsera Weninger 2022
Beta-307796 bone Homo sapiens C14 4980±30 BP Balsera Weninger 2022
Beta-307797 bone Homo sapiens C14 4420±30 BP Balsera Weninger 2022
nd-195 bone NA 14C 3170±130 BP Eubar Weninger 2022
unreport-35 NA C14 3170±130 BP Balsera Weninger 2022
No det. Dolmen Hueso humano NA NA 3170±130 BP APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221 MARIEZKURRENA K. 1990, pp. 287-304. FERNÁNDEZ-ERASO J, MUJIKA-ALUSTIZA JA. 2013: 89-106.
Beta-288936 Dolmen Hueso humano NA NA 3280±40 BP APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221 FERNÁNDEZ-ERASO J, MUJIKA-ALUSTIZA JA. 2013: 89-106.
Beta-288936 bone NA NA 3280±40 BP Vermeersch2019 Bird et al. 2022

typological date Typological dates (2)

Classification Estimated age References
Bronze Age NA Balsera
Bronze Age NA Eubar

Bibliographic reference Bibliographic references

@misc{Balsera,
  
}
@misc{Eubar,
  
}
@misc{APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221
MARIEZKURRENA K. 1990, pp. 287-304.
FERNÁNDEZ-ERASO J, MUJIKA-ALUSTIZA JA. 2013: 89-106.,
  
}
@misc{APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221
FERNÁNDEZ-ERASO J, MUJIKA-ALUSTIZA JA. 2013: 89-106.,
  
}
@misc{Vermeersch2019,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@misc{EUBAR,
  url = {https://telearchaeology.org/EUBAR/},
  note = {CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Balsera","bibtex_type":"misc"}{"bibtex_key":"Eubar","bibtex_type":"misc"}{"bibtex_key":"APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221\r\nMARIEZKURRENA K. 1990, pp. 287-304.\r\nFERNÁNDEZ-ERASO J, MUJIKA-ALUSTIZA JA. 2013: 89-106.","bibtex_type":"misc"}{"bibtex_key":"APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221\r\nFERNÁNDEZ-ERASO J, MUJIKA-ALUSTIZA JA. 2013: 89-106.","bibtex_type":"misc"}{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"EUBAR","bibtex_type":"misc","url":"{https://telearchaeology.org/EUBAR/}","note":"{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Balsera
:bibtex_type: :misc
---
:bibtex_key: Eubar
:bibtex_type: :misc
---
:bibtex_key: "APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221\r\nMARIEZKURRENA
  K. 1990, pp. 287-304.\r\nFERNÁNDEZ-ERASO J, MUJIKA-ALUSTIZA JA. 2013: 89-106."
:bibtex_type: :misc
---
:bibtex_key: "APELLANIZ JM, FERNANDEZ MEDRANO D. 1978, pp.141-221\r\nFERNÁNDEZ-ERASO
  J, MUJIKA-ALUSTIZA JA. 2013: 89-106."
:bibtex_type: :misc
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: EUBAR
  :bibtex_type: :misc
  :url: "{https://telearchaeology.org/EUBAR/}"
  :note: "{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements
    for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts
    from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog