Site types
Open air, palafitte, settlement, and

Location

Coordinates (degrees)
NA
Coordinates (DMS)
NA
Country (ISO 3166)
Italy (IT)

radiocarbon date Radiocarbon dates (43)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
R-1741a charcoal NA NA 5385±90 BP 6386–5936 cal BP Facchinetti 2012
R-1742a charcoal NA NA 5370±55 BP 6285–6000 cal BP Facchinetti 2012
Birm-34 wooden beam wood NA NA 3642±36 BP 4085–3850 cal BP Capuzzo et al. 2014 Palmisano et al. 2022
Pi-88 wooden pole wood NA NA 3137±105 BP 3577–3007 cal BP Capuzzo et al. 2014 Palmisano et al. 2022
R-1731a charcoal NA NA 3625±75 BP 4150–3718 cal BP Skeates 2003 Palmisano et al. 2022
R-1732a layer 1a3 seed (charred) NA NA 3365±50 BP 3811–3463 cal BP Capuzzo et al. 2014 Palmisano et al. 2022
R-1733a wood NA NA 3650±80 BP 4231–3722 cal BP Skeates 2003 Palmisano et al. 2022
R-1734a wood NA NA 3685±80 BP 4287–3731 cal BP Skeates 2003 Palmisano et al. 2022
R-1736a wood NA NA 3880±90 BP 4525–3995 cal BP Skeates 2003 Palmisano et al. 2022
R-1739a wood NA NA 3710±75 BP 4290–3840 cal BP Skeates 2003 Palmisano et al. 2022
R-1740a wood NA NA 3870±80 BP 4519–4005 cal BP Skeates 2003 Palmisano et al. 2022
R-1741A wood NA NA 5385±90 BP 6386–5936 cal BP VIsentini 2006 Palmisano et al. 2022
R-1742A wood NA NA 5370±55 BP 6285–6000 cal BP VIsentini 2006 Palmisano et al. 2022
R-1743a charcoal NA NA 3850±60 BP 4418–4091 cal BP Skeates 2003 Palmisano et al. 2022
R-1744a layer 4 charcoal NA NA 3360±70 BP 3826–3447 cal BP Capuzzo et al. 2014 Palmisano et al. 2022
R-1746a layer 4 charcoal NA NA 3480±65 BP 3905–3569 cal BP Skeates 2003; Capuzzo et al. 2014 Palmisano et al. 2022
R-1747a wood NA NA 3645±80 BP 4231–3719 cal BP Skeates 2003 Palmisano et al. 2022
R-1748a charcoal NA NA 3515±120 BP 4143–3470 cal BP Skeates 2003 Palmisano et al. 2022
R-1749a charcoal NA NA 3540±65 BP 4065–3638 cal BP Skeates 2003 Palmisano et al. 2022
R-1750a wood NA NA 3730±65 BP 4290–3892 cal BP Skeates 2003 Palmisano et al. 2022

typological date Typological dates (19)

Classification Estimated age References
MiddleNeolithic NA Facchinetti 2012
MiddleNeolithic NA Facchinetti 2012
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Bronze Age NA Capuzzo, Boaretto, and Barceló 2014
Polada NA Leonardi et al. 2015, 301-304 Appendix
Bronze Age NA NA
Polada NA Leonardi et al. 2015, 301-304 Appendix
Bronze Age NA NA
Polada NA Leonardi et al. 2015, 301-304 Appendix
Bronze Age NA NA
Polada NA Leonardi et al. 2015, 301-304 Appendix
Bronze Age NA NA
Polada NA Leonardi et al. 2015, 301-304 Appendix
Bronze Age NA NA
Polada NA Leonardi et al. 2015, 301-304 Appendix
Bronze Age NA NA
Néolithique moyen NA Facchinetti 2012
Néolithique moyen NA Facchinetti 2012

Bibliographic reference Bibliographic references

@misc{Facchinetti 2012,
  
}
@misc{Capuzzo et al. 2014,
  
}
@misc{Skeates 2003,
  
}
@misc{VIsentini 2006,
  
}
@misc{Skeates 2003; Capuzzo et al. 2014,
  
}
@article{CapuzzoEtAl2014,
  title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
  shorttitle = {EUBAR},
  author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
  year = {2014},
  month = {jan},
  journal = {Radiocarbon},
  volume = {56},
  number = {2},
  pages = {851–869},
  issn = {0033-8222, 1945-5755},
  doi = {10.2458/56.17453},
  abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
  langid = {english},
  month_numeric = {1}
}
@misc{RIEDEL A. 1976b, pp. 3-120.
TOMASI G. 1982, pp. 1-41.
FOGOLARI G. 1983, La palafitta di Molina di Ledro: stato dei lavori per la pubblicazione. Beni Culturali nel Trentino, interventi dal 1979 al 1983, Trento, pp. 45-48.
CORTESI C., LEONARDI G. 1997, pp. 133-138.,
  
}
@misc{Leonardi et al. 2015, 301-304 Appendix,
  
}
@misc{Leonardi et al. 2015 301-304 Appendix,
  
}
@misc{AgriChange,
  url = {https://doi.org/10.5281/zenodo.4541470},
  note = {Martínez-Grau, Héctor, Morell-Rovira, Berta, & Antolín, Ferran. (2020). Radiocarbon dates associated to Neolithic contexts (ca. 5900 – 2000 cal BC) from the northwestern Mediterranean Arch to the High Rhine area [Data set]. In Journal of Open Archaeology Data (Vol. 9, Number 1, pp. 1–10). Zenodo. https://doi.org/10.5281/zenodo.4541470}
}
@dataset{AIDA,
  title = {AIDA: Archive of Italian Radiocarbon Dates},
  author = {Palmisano, Alessio and Bevan, Andrew and Kabelindde, A. and Roberts, N. and Shennan, S.},
  date = {2022-04-09},
  url = {https://github.com/apalmisano82/AIDA},
  version = {5.0}
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@misc{EUBAR,
  url = {https://telearchaeology.org/EUBAR/},
  note = {CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}
}
@dataset{RADON-B,
  title = {RADON-B – Radiocarbon Dates Online (Version 2014).  Database for European 14C Dates for the Bronze and Early Iron Age},
  author = {Kneisel, Jutta and Hinz, Martin and Rinne, Christophe},
  date = {2014},
  url = {https://radon-b.ufg.uni-kiel.de},
  abstract = {The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}
}
@dataset{BDA,
  title = {Base de Données Archéologique (BDA)},
  author = {Perrin, Thomas},
  date = {2021-02-03},
  publisher = {NAKALA},
  doi = {10.34847/nkl.dde9fnm8},
  url = {https://nakala.fr/10.34847/nkl.dde9fnm8},
  urldate = {2023-09-07},
  abstract = {Exports in .xlsx format of the main tables of the BDA database (Archaeological Database), available here https://bda.huma-num.fr/ in Filemaker Pro format.},
  langid = {french}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Facchinetti 2012","bibtex_type":"misc"}{"bibtex_key":"Capuzzo et al. 2014","bibtex_type":"misc"}{"bibtex_key":"Skeates 2003","bibtex_type":"misc"}{"bibtex_key":"VIsentini 2006","bibtex_type":"misc"}{"bibtex_key":"Skeates 2003; Capuzzo et al. 2014","bibtex_type":"misc"}[{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}]{"bibtex_key":"RIEDEL A. 1976b, pp. 3-120.\r\nTOMASI G. 1982, pp. 1-41.\r\nFOGOLARI G. 1983, La palafitta di Molina di Ledro: stato dei lavori per la pubblicazione. Beni Culturali nel Trentino, interventi dal 1979 al 1983, Trento, pp. 45-48.\r\nCORTESI C., LEONARDI G. 1997, pp. 133-138.","bibtex_type":"misc"}{"bibtex_key":"Leonardi et al. 2015, 301-304 Appendix","bibtex_type":"misc"}{"bibtex_key":"Leonardi et al. 2015 301-304 Appendix","bibtex_type":"misc"}[{"bibtex_key":"AgriChange","bibtex_type":"misc","url":"{https://doi.org/10.5281/zenodo.4541470}","note":"{Martínez-Grau, Héctor, Morell-Rovira, Berta, & Antolín, Ferran. (2020). Radiocarbon dates associated to Neolithic contexts (ca. 5900 – 2000 cal BC) from the northwestern Mediterranean Arch to the High Rhine area [Data set]. In Journal of Open Archaeology Data (Vol. 9, Number 1, pp. 1–10). Zenodo. https://doi.org/10.5281/zenodo.4541470}"}][{"bibtex_key":"AIDA","bibtex_type":"dataset","title":"{AIDA: Archive of Italian Radiocarbon Dates}","author":"{Palmisano, Alessio and Bevan, Andrew and Kabelindde, A. and Roberts, N. and Shennan, S.}","date":"{2022-04-09}","url":"{https://github.com/apalmisano82/AIDA}","version":"{5.0}"}][{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"EUBAR","bibtex_type":"misc","url":"{https://telearchaeology.org/EUBAR/}","note":"{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"}][{"bibtex_key":"RADON-B","bibtex_type":"dataset","title":"{RADON-B – Radiocarbon Dates Online (Version 2014).  Database for European 14C Dates for the Bronze and Early Iron Age}","author":"{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}","date":"{2014}","url":"{https://radon-b.ufg.uni-kiel.de}","abstract":"{The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}"}][{"bibtex_key":"BDA","bibtex_type":"dataset","title":"{Base de Données Archéologique (BDA)}","author":"{Perrin, Thomas}","date":"{2021-02-03}","publisher":"{NAKALA}","doi":"{10.34847/nkl.dde9fnm8}","url":"{https://nakala.fr/10.34847/nkl.dde9fnm8}","urldate":"{2023-09-07}","abstract":"{Exports in .xlsx format of the main tables of the BDA database (Archaeological Database), available here https://bda.huma-num.fr/ in Filemaker Pro format.}","langid":"{french}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Facchinetti 2012
:bibtex_type: :misc
---
:bibtex_key: Capuzzo et al. 2014
:bibtex_type: :misc
---
:bibtex_key: Skeates 2003
:bibtex_type: :misc
---
:bibtex_key: VIsentini 2006
:bibtex_type: :misc
---
:bibtex_key: Skeates 2003; Capuzzo et al. 2014
:bibtex_type: :misc
---
- :bibtex_key: CapuzzoEtAl2014
  :bibtex_type: :article
  :title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
    Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
    France}"
  :shorttitle: "{EUBAR}"
  :author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
  :year: "{2014}"
  :month: "{jan}"
  :journal: "{Radiocarbon}"
  :volume: "{56}"
  :number: "{2}"
  :pages: "{851–869}"
  :issn: "{0033-8222, 1945-5755}"
  :doi: "{10.2458/56.17453}"
  :abstract: "{The chronological framework of European protohistory is mostly a relative
    chronology based on typology and stratigraphic data. Synchronization of different
    time periods suffers from a lack of absolute dates; therefore, disagreements between
    different chronological schemes are difficult to reconcile. An alternative approach
    was applied in this study to build a more precise and accurate absolute chronology.
    To the best of our knowledge, we have collected all the published 14C dates for
    the archaeological sites in the region from the Ebro River (Spain) to the Middle
    Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
    information associated with the 14C dates was organized in a database that totaled
    more than 1600 14C dates. In order to build an accurate and precise chronology,
    quality selection rules have been applied to the 14C dates based on both archaeological
    context and analytical quality. Using the OxCal software and Bayesian analysis,
    several 14C time sequences were created following the archaeological data and
    different possible scenarios were tested in northern Italy and southern France.}"
  :langid: "{english}"
  :month_numeric: "{1}"
---
:bibtex_key: "RIEDEL A. 1976b, pp. 3-120.\r\nTOMASI G. 1982, pp. 1-41.\r\nFOGOLARI
  G. 1983, La palafitta di Molina di Ledro: stato dei lavori per la pubblicazione.
  Beni Culturali nel Trentino, interventi dal 1979 al 1983, Trento, pp. 45-48.\r\nCORTESI
  C., LEONARDI G. 1997, pp. 133-138."
:bibtex_type: :misc
---
:bibtex_key: Leonardi et al. 2015, 301-304 Appendix
:bibtex_type: :misc
---
:bibtex_key: Leonardi et al. 2015 301-304 Appendix
:bibtex_type: :misc
---
- :bibtex_key: AgriChange
  :bibtex_type: :misc
  :url: "{https://doi.org/10.5281/zenodo.4541470}"
  :note: "{Martínez-Grau, Héctor, Morell-Rovira, Berta, & Antolín, Ferran. (2020).
    Radiocarbon dates associated to Neolithic contexts (ca. 5900 – 2000 cal BC) from
    the northwestern Mediterranean Arch to the High Rhine area [Data set]. In Journal
    of Open Archaeology Data (Vol. 9, Number 1, pp. 1–10). Zenodo. https://doi.org/10.5281/zenodo.4541470}"
---
- :bibtex_key: AIDA
  :bibtex_type: :dataset
  :title: "{AIDA: Archive of Italian Radiocarbon Dates}"
  :author: "{Palmisano, Alessio and Bevan, Andrew and Kabelindde, A. and Roberts,
    N. and Shennan, S.}"
  :date: "{2022-04-09}"
  :url: "{https://github.com/apalmisano82/AIDA}"
  :version: "{5.0}"
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: EUBAR
  :bibtex_type: :misc
  :url: "{https://telearchaeology.org/EUBAR/}"
  :note: "{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements
    for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts
    from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"
---
- :bibtex_key: RADON-B
  :bibtex_type: :dataset
  :title: "{RADON-B – Radiocarbon Dates Online (Version 2014).  Database for European
    14C Dates for the Bronze and Early Iron Age}"
  :author: "{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}"
  :date: "{2014}"
  :url: "{https://radon-b.ufg.uni-kiel.de}"
  :abstract: "{The database provides a quick overview of 14C dates from Europe. The
    time frame was limited to the Bronze and Early Iron Ages and covers the period
    from 2300 BC to 500 BC. The database can be searched by geographic or chronological
    factors, but also according to the nature of the sample material, the sites or
    features. The data and related information were taken from the literature cited
    in each case, and due to the timing of phases and culture assignment, are subject
    to change. We therefore assume no responsibility for the accuracy of source data.}"
---
- :bibtex_key: BDA
  :bibtex_type: :dataset
  :title: "{Base de Données Archéologique (BDA)}"
  :author: "{Perrin, Thomas}"
  :date: "{2021-02-03}"
  :publisher: "{NAKALA}"
  :doi: "{10.34847/nkl.dde9fnm8}"
  :url: "{https://nakala.fr/10.34847/nkl.dde9fnm8}"
  :urldate: "{2023-09-07}"
  :abstract: "{Exports in .xlsx format of the main tables of the BDA database (Archaeological
    Database), available here https://bda.huma-num.fr/ in Filemaker Pro format.}"
  :langid: "{french}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog