Gesher
Archaeological site
in Israel
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Location
- Coordinates (degrees)
- 032.650° N, 035.510° E
- Coordinates (DMS)
- 032° 39' 00" E, 035° 30' 00" N
- Country (ISO 3166)
- Israel (IL)
Linked Data
Lab ID | Context | Material | Taxon | Method | Uncalibrated age | Calibrated age | References |
---|---|---|---|---|---|---|---|
OxA-5054 | carbonate | NA | NA | 1760±50 BP | 1740–1537 cal BP | ORAU Palmisano et al. 2022 | |
OxA-1955 | No.42, Grave 13 | wood | NA | NA | 3640±70 BP | 4153–3724 cal BP | Hinz et al. 2012 |
OxA-1955 | wood | NA | NA | 3640±70 BP | 4153–3724 cal BP | Housley 1994 66 Bird et al. 2022 | |
OxA-1955 | wood | NA | 14C | 3640±70 BP | 4153–3724 cal BP | Housley 1994, 66 Weninger 2022 | |
OxA-1955 | Grave 13, obj. 42; Tomb 13 | wood | NA | NA | 3640±70 BP | 4153–3724 cal BP | CalPal; Falconer and Fall 2016 Palmisano et al. 2022 |
OxA-1955 | No.42, Grave 13 | wood | NA | NA | 3640±70 BP | 4153–3724 cal BP | Kneisel, Hinz, and Rinne 2014 |
OxA-5053 | charcoal | NA | NA | 8550±110 BP | 9892–9289 cal BP | Bronk-Ramsey 2002; Hinz et al. 2012: http://radon.ufg.uni-kiel.de/samples/11833; Flohr et al. 2016 Palmisano et al. 2022 | |
OxA-5053 | CO2 charcoal | NA | NA | 8550±110 BP | 9892–9289 cal BP | Flohretal2016 Bird et al. 2022 | |
RT-868B | charcoal | NA | 14C | 9790±140 BP | 11700–10730 cal BP | Weninger 2022 | |
RT-868B | charcoal | NA | NA | 9790±140 BP | 11700–10730 cal BP | Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992 | |
RT-868B | charcoal | NA | NA | 9790±140 BP | 11700–10730 cal BP | CALPAL; CONTEXT; Flohretal2016 Bird et al. 2022 | |
RT-868B | area A, -4 m; Area A, 4 m below surface | charcoal | NA | NA | 9790±140 BP | 11700–10730 cal BP | CalPal; Maher et al. 2011; Flohr et al. 2016 Palmisano et al. 2022 |
RT-868A | charcoal | NA | NA | 9820±140 BP | 11745–10766 cal BP | Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992, Schyle 1996 | |
RT-868A | charcoal | NA | 14C | 9820±140 BP | 11745–10766 cal BP | Weninger 2022 | |
RT-868A | arae A, -4 m; Area A, 4 m below surface | charcoal | NA | NA | 9820±140 BP | 11745–10766 cal BP | CalPal; Maher et al. 2011; Flohr et al. 2016 Palmisano et al. 2022 |
RT-868A | charcoal | NA | NA | 9820±140 BP | 11745–10766 cal BP | CALPAL; CONTEXT; Flohretal2016 Bird et al. 2022 | |
Pta-4595 | charcoal | NA | NA | 9870±80 BP | 11688–11169 cal BP | Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992, Schyle 1996 | |
Pta-4595 | charcoal | NA | NA | 9870±80 BP | 11688–11169 cal BP | CALPAL Bird et al. 2022 | |
Pta-4595 | charcoal | NA | 14C | 9870±80 BP | 11688–11169 cal BP | Weninger 2022 | |
Pta-4595 | charcoal | NA | NA | 9870±80 BP | 11688–11169 cal BP | Benz 2014; CalPal; Bar-Yosef 1988; Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016 Palmisano et al. 2022 |
Classification | Estimated age | References |
---|---|---|
PPNA | NA | NA |
ACN | NA | Carmi and Segal 1992 |
PPNA | NA | NA |
ACN | NA | Carmi and Segal 1992 |
PPNA | NA | NA |
Bibliographic references
- No bibliographic information available. [Housley 1994, 66]
- No bibliographic information available. [Carmi and Segal 1992, 122-123]
- No bibliographic information available. [Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992]
- No bibliographic information available. [Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992, Schyle 1996]
- No bibliographic information available. [Carmi and Segal 1992]
- No bibliographic information available. [CalPal; Falconer and Fall 2016]
- No bibliographic information available. [Bronk-Ramsey 2002; Hinz et al. 2012: http://radon.ufg.uni-kiel.de/samples/11833; Flohr et al. 2016]
- No bibliographic information available. [ORAU]
- No bibliographic information available. [Benz 2014; CalPal; Bar-Yosef 1988; Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016]
- No bibliographic information available. [Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016]
- No bibliographic information available. [Carmi and Segal 1992; Maher et al. 2011; CalPal; Flohr et al. 2016]
- No bibliographic information available. [CalPal; Maher et al. 2011; Flohr et al. 2016]
- No bibliographic information available. [Housley 1994 66]
- No bibliographic information available. [Flohretal2016]
- No bibliographic information available. [CALPAL]
- No bibliographic information available. [Carmi and Segal 1992 122-123]
- No bibliographic information available. [CALPAL; CONTEXT; Flohretal2016]
- Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
- http://context-database.uni-koeln.de/index.php [CONTEXT]
- Hinz, M., Furholt, M., Müller, J., Raetzel-Fabian, D., Rinne, C., Sjögren, K.-G., & Wotzka, H.-P. (2012). RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age. Journal of Neolithic Archaeology, 14, 1–4. https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116 [RADON]
- Kneisel, J., Hinz, M., & Rinne, C. (2014). RADON-B – Radiocarbon Dates Online (Version 2014). Database for European 14C Dates for the Bronze and Early Iron Age [Data set]. https://radon-b.ufg.uni-kiel.de [RADON-B]
- Palmisano, A., Bevan, A., Lawrence, D., & Shennan, S. (2022). The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP. 10(0), 2. https://doi.org/10.5334/joad.90 [NERD]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Housley 1994, 66,
}
@misc{Carmi and Segal 1992, 122-123,
}
@misc{Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992,
}
@misc{Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992, Schyle 1996,
}
@misc{Carmi and Segal 1992,
}
@misc{CalPal; Falconer and Fall 2016,
}
@misc{Bronk-Ramsey 2002; Hinz et al. 2012: http://radon.ufg.uni-kiel.de/samples/11833; Flohr et al. 2016,
}
@misc{ORAU,
}
@misc{Benz 2014; CalPal; Bar-Yosef 1988; Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016,
}
@misc{Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016,
}
@misc{Carmi and Segal 1992; Maher et al. 2011; CalPal; Flohr et al. 2016,
}
@misc{CalPal; Maher et al. 2011; Flohr et al. 2016,
}
@misc{Housley 1994 66,
}
@misc{Flohretal2016,
}
@misc{CALPAL,
}
@misc{Carmi and Segal 1992 122-123,
}
@misc{CALPAL; CONTEXT; Flohretal2016,
}
@misc{CalPal,
title = {CalPal Edition 2022.9},
author = {Weninger, Bernie},
year = {2022},
month = {sep},
doi = {1010.5281/zenodo.7422618},
url = {https://zenodo.org/record/7422618},
abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
copyright = {Creative Commons Attribution 4.0 International, Open Access},
howpublished = {Zenodo},
month_numeric = {9}
}
@misc{CONTEXT,
url = {http://context-database.uni-koeln.de/index.php},
note = {Schyle, D. & Böhner, U. 2006. Near Eastern radiocarbon CONTEXT database. https://doi.org/10.1594/GFZ.CONTEXT.ED1}
}
@article{RADON,
title = {RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.},
author = {Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter},
date = {2012},
journaltitle = {Journal of Neolithic Archaeology},
volume = {14},
pages = {1–4},
url = {https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116},
abstract = {In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}
}
@dataset{RADON-B,
title = {RADON-B – Radiocarbon Dates Online (Version 2014). Database for European 14C Dates for the Bronze and Early Iron Age},
author = {Kneisel, Jutta and Hinz, Martin and Rinne, Christophe},
date = {2014},
url = {https://radon-b.ufg.uni-kiel.de},
abstract = {The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}
}
@article{NERD,
title = {The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP},
shorttitle = {The NERD Dataset},
author = {Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen},
date = {2022-02-22},
volume = {10},
number = {0},
pages = {2},
publisher = {Ubiquity Press},
issn = {2049-1565},
doi = {10.5334/joad.90},
url = {https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90},
urldate = {2023-09-07},
abstract = {To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.},
issue = {0},
langid = {american},
file = {/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
{"bibtex_key":"Housley 1994, 66","bibtex_type":"misc"}{"bibtex_key":"Carmi and Segal 1992, 122-123","bibtex_type":"misc"}{"bibtex_key":"Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992","bibtex_type":"misc"}{"bibtex_key":"Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992, Schyle 1996","bibtex_type":"misc"}{"bibtex_key":"Carmi and Segal 1992","bibtex_type":"misc"}{"bibtex_key":"CalPal; Falconer and Fall 2016","bibtex_type":"misc"}{"bibtex_key":"Bronk-Ramsey 2002; Hinz et al. 2012: http://radon.ufg.uni-kiel.de/samples/11833; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"ORAU","bibtex_type":"misc"}{"bibtex_key":"Benz 2014; CalPal; Bar-Yosef 1988; Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Carmi and Segal 1992; Maher et al. 2011; CalPal; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"CalPal; Maher et al. 2011; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Housley 1994 66","bibtex_type":"misc"}{"bibtex_key":"Flohretal2016","bibtex_type":"misc"}{"bibtex_key":"CALPAL","bibtex_type":"misc"}{"bibtex_key":"Carmi and Segal 1992 122-123","bibtex_type":"misc"}{"bibtex_key":"CALPAL; CONTEXT; Flohretal2016","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"CONTEXT","bibtex_type":"misc","url":"{http://context-database.uni-koeln.de/index.php}","note":"{Schyle, D. & Böhner, U. 2006. Near Eastern radiocarbon CONTEXT database. https://doi.org/10.1594/GFZ.CONTEXT.ED1}"}][{"bibtex_key":"RADON","bibtex_type":"article","title":"{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.}","author":"{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}","date":"{2012}","journaltitle":"{Journal of Neolithic Archaeology}","volume":"{14}","pages":"{1–4}","url":"{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}","abstract":"{In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}"}][{"bibtex_key":"RADON-B","bibtex_type":"dataset","title":"{RADON-B – Radiocarbon Dates Online (Version 2014). Database for European 14C Dates for the Bronze and Early Iron Age}","author":"{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}","date":"{2014}","url":"{https://radon-b.ufg.uni-kiel.de}","abstract":"{The database provides a quick overview of 14C dates from Europe. The time frame was limited to the Bronze and Early Iron Ages and covers the period from 2300 BC to 500 BC. The database can be searched by geographic or chronological factors, but also according to the nature of the sample material, the sites or features. The data and related information were taken from the literature cited in each case, and due to the timing of phases and culture assignment, are subject to change. We therefore assume no responsibility for the accuracy of source data.}"}][{"bibtex_key":"NERD","bibtex_type":"article","title":"{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP}","shorttitle":"{The NERD Dataset}","author":"{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}","date":"{2022-02-22}","volume":"{10}","number":"{0}","pages":"{2}","publisher":"{Ubiquity Press}","issn":"{2049-1565}","doi":"{10.5334/joad.90}","url":"{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}","urldate":"{2023-09-07}","abstract":"{To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.}","issue":"{0}","langid":"{american}","file":"{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Housley 1994, 66
:bibtex_type: :misc
---
:bibtex_key: Carmi and Segal 1992, 122-123
:bibtex_type: :misc
---
:bibtex_key: Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992
:bibtex_type: :misc
---
:bibtex_key: Bar-Yosef 1988, Garfinkel and Nadel 1989, Carmi and Segal 1992, Schyle
1996
:bibtex_type: :misc
---
:bibtex_key: Carmi and Segal 1992
:bibtex_type: :misc
---
:bibtex_key: CalPal; Falconer and Fall 2016
:bibtex_type: :misc
---
:bibtex_key: 'Bronk-Ramsey 2002; Hinz et al. 2012: http://radon.ufg.uni-kiel.de/samples/11833;
Flohr et al. 2016'
:bibtex_type: :misc
---
:bibtex_key: ORAU
:bibtex_type: :misc
---
:bibtex_key: Benz 2014; CalPal; Bar-Yosef 1988; Carmi and Segal 1992; Maher et al.
2011; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Carmi and Segal 1992; Maher et al. 2011; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Carmi and Segal 1992; Maher et al. 2011; CalPal; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: CalPal; Maher et al. 2011; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Housley 1994 66
:bibtex_type: :misc
---
:bibtex_key: Flohretal2016
:bibtex_type: :misc
---
:bibtex_key: CALPAL
:bibtex_type: :misc
---
:bibtex_key: Carmi and Segal 1992 122-123
:bibtex_type: :misc
---
:bibtex_key: CALPAL; CONTEXT; Flohretal2016
:bibtex_type: :misc
---
- :bibtex_key: CalPal
:bibtex_type: :misc
:title: "{CalPal Edition 2022.9}"
:author: "{Weninger, Bernie}"
:year: "{2022}"
:month: "{sep}"
:doi: "{1010.5281/zenodo.7422618}"
:url: "{https://zenodo.org/record/7422618}"
:abstract: "{CalPal is scientific freeware for 14C-based chronological research
for Holocene and Palaeolithic Archaeology.}"
:copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
:howpublished: "{Zenodo}"
:month_numeric: "{9}"
---
- :bibtex_key: CONTEXT
:bibtex_type: :misc
:url: "{http://context-database.uni-koeln.de/index.php}"
:note: "{Schyle, D. & Böhner, U. 2006. Near Eastern radiocarbon CONTEXT database.
https://doi.org/10.1594/GFZ.CONTEXT.ED1}"
---
- :bibtex_key: RADON
:bibtex_type: :article
:title: "{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C
Dates for the Neolithic and the Early Bronze Age.}"
:author: "{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian,
Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}"
:date: "{2012}"
:journaltitle: "{Journal of Neolithic Archaeology}"
:volume: "{14}"
:pages: "{1–4}"
:url: "{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}"
:abstract: "{In order to understand the dynamics of cultural phenomena, scientific
dating in archaeology is an increasingly indispensable tool. Only by dating independently
of typology is it possible to understand typological development itself (Müller
2004). Here radiometric dating methods, especially those based on carbon isotopy,
still play the most important role. For evaluations exceeding the intra-site level,
it is particularly important that such data is collected in large numbers and
that the dates are easily accessible. Also, new statistical analyses, such as
sequential calibration based on Bayesian methods, do not require single dates,
but rather demand a greater number. By their combination significantly more elaborate
results can be achieved compared to the results from conventional evaluation (e.
g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This
approach continues to be applied in the international research community, which
we welcome as a highly positive development. The radiocarbon database RADON has
been committed to this principle for more than 12 years. In this database 14C
data – primarily of the Neolithic of Central Europe and Southern Scandinavia –
is collected and successively augmented.}"
---
- :bibtex_key: RADON-B
:bibtex_type: :dataset
:title: "{RADON-B – Radiocarbon Dates Online (Version 2014). Database for European
14C Dates for the Bronze and Early Iron Age}"
:author: "{Kneisel, Jutta and Hinz, Martin and Rinne, Christophe}"
:date: "{2014}"
:url: "{https://radon-b.ufg.uni-kiel.de}"
:abstract: "{The database provides a quick overview of 14C dates from Europe. The
time frame was limited to the Bronze and Early Iron Ages and covers the period
from 2300 BC to 500 BC. The database can be searched by geographic or chronological
factors, but also according to the nature of the sample material, the sites or
features. The data and related information were taken from the literature cited
in each case, and due to the timing of phases and culture assignment, are subject
to change. We therefore assume no responsibility for the accuracy of source data.}"
---
- :bibtex_key: NERD
:bibtex_type: :article
:title: "{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500
Cal. Yr. BP}"
:shorttitle: "{The NERD Dataset}"
:author: "{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}"
:date: "{2022-02-22}"
:volume: "{10}"
:number: "{0}"
:pages: "{2}"
:publisher: "{Ubiquity Press}"
:issn: "{2049-1565}"
:doi: "{10.5334/joad.90}"
:url: "{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}"
:urldate: "{2023-09-07}"
:abstract: "{To our knowledge, the dataset described in this paper represents the
largest existing repository of uncalibrated radiocarbon dates for the whole Near
East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP).
It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected
comprehensively by cross-checking multiple sources (extant digital archives and
databases, edited volumes, monographs, journals papers, archaeological excavation
reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing
the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape,
Settlement and Society: Exploring Human-Environment Interaction in the Ancient
Near East”. This is an ongoing dataset that will be updated step by step with
newly published radiocarbon dates.}"
:issue: "{0}"
:langid: "{american}"
:file: "{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"