Site types
Settlement, settlement, and

Location

Coordinates (degrees)
035.440° N, 051.550° E
Coordinates (DMS)
035° 26' 00" E, 051° 33' 00" N
Country (ISO 3166)
Iran (IR)

radiocarbon date Radiocarbon dates (102)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
OxA-14736 bone Bos 14C 1967±31 BP Pollard 2015 Weninger 2022
OxA-14736 bone Bos taurus NA 1967±31 BP Pollard et al. 2013 Palmisano et al. 2022
OxA-14736 bone NA NA 1967±31 BP Marshall 2012 Gillmore et al. 2009 Bird et al. 2022
OxA-18770 bone NA NA 3077±34 BP Pollard 2015 Bird et al. 2022
OxA-18770 bone NA 14C 3077±34 BP Pollard 2015 Weninger 2022
OxA-18770 TP07 Tr.VI bone NA NA 3077±34 BP Pollard et al. 2013 Palmisano et al. 2022
OxA-18765 TP06 Tr.VI bone NA NA 3088±29 BP Pollard et al. 2013 Palmisano et al. 2022
OxA-18765 bone NA 14C 3088±29 BP Pollard 2015 Weninger 2022
OxA-18765 bone NA NA 3088±29 BP Pollard 2015 Bird et al. 2022
OxA-18766 bone NA 14C 3105±29 BP Pollard 2015 Weninger 2022
OxA-18766 TP07 Tr.VI bone NA NA 3105±29 BP Pollard et al. 2013 Palmisano et al. 2022
OxA-18766 bone NA NA 3105±29 BP Pollard 2015 Bird et al. 2022
OxA-18768 TP07 Tr.VI bone NA NA 3106±29 BP Pollard et al. 2013 Palmisano et al. 2022
OxA-18768 bone NA 14C 3106±29 BP Pollard 2015 Weninger 2022
OxA-18768 bone NA NA 3106±29 BP Pollard 2015 Bird et al. 2022
OxA-19024 TP07 Tr.VI bone NA NA 3108±27 BP Pollard et al. 2013 Palmisano et al. 2022
OxA-19024 bone NA 14C 3108±27 BP Pollard 2015 Weninger 2022
OxA-19024 bone NA NA 3108±27 BP Pollard 2015 Bird et al. 2022
OxA-19026 bone NA 14C 3116±27 BP Pollard 2015 Weninger 2022
OxA-19026 TP07 Tr.VI bone NA NA 3116±27 BP Pollard et al. 2013 Palmisano et al. 2022

typological date Typological dates (33)

Classification Estimated age References
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Pollard 2015
Neolithic NA Pollard 2015
Neolithic NA Pollard 2015
Neolithic NA Pollard 2015
Bronze Age NA Pollard 2015
Bronze Age NA Pollard 2015
Bronze Age NA Pollard 2015

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Pollard 2015]
  • No bibliographic information available. [Marshall 2012]
  • No bibliographic information available. [Pollard et al. 2013]
  • No bibliographic information available. [Marshall 2012; Flohr et al. 2016]
  • No bibliographic information available. [Marshall 2012 Gillmore et al. 2009]
  • No bibliographic information available. [Carvalho 2008]
  • No bibliographic information available. [Flohretal2016]
  • No bibliographic information available. [Vermeersch2019]
  • No bibliographic information available. [DoukaJacobs.2014Chrono]
  • No bibliographic information available. [Courtesy Raiko KrauÔøΩ 2016]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Palmisano, A., Bevan, A., Lawrence, D., & Shennan, S. (2022). The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP. 10(0), 2. https://doi.org/10.5334/joad.90 [NERD]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Pollard 2015,
  
}
@misc{Marshall 2012,
  
}
@misc{Pollard et al. 2013,
  
}
@misc{Marshall 2012; Flohr et al. 2016,
  
}
@misc{Marshall 2012 Gillmore et al. 2009,
  
}
@misc{Carvalho 2008,
  
}
@misc{Flohretal2016,
  
}
@misc{Vermeersch2019,
  
}
@misc{DoukaJacobs.2014Chrono,
  
}
@misc{Courtesy Raiko KrauÔøΩ 2016,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{NERD,
  title = {The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP},
  shorttitle = {The NERD Dataset},
  author = {Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen},
  date = {2022-02-22},
  volume = {10},
  number = {0},
  pages = {2},
  publisher = {Ubiquity Press},
  issn = {2049-1565},
  doi = {10.5334/joad.90},
  url = {https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90},
  urldate = {2023-09-07},
  abstract = {To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.},
  issue = {0},
  langid = {american},
  file = {/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Pollard 2015","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012","bibtex_type":"misc"}{"bibtex_key":"Pollard et al. 2013","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012 Gillmore et al. 2009","bibtex_type":"misc"}{"bibtex_key":"Carvalho 2008","bibtex_type":"misc"}{"bibtex_key":"Flohretal2016","bibtex_type":"misc"}{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}{"bibtex_key":"DoukaJacobs.2014Chrono","bibtex_type":"misc"}{"bibtex_key":"Courtesy Raiko KrauÔøΩ 2016","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"NERD","bibtex_type":"article","title":"{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP}","shorttitle":"{The NERD Dataset}","author":"{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}","date":"{2022-02-22}","volume":"{10}","number":"{0}","pages":"{2}","publisher":"{Ubiquity Press}","issn":"{2049-1565}","doi":"{10.5334/joad.90}","url":"{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}","urldate":"{2023-09-07}","abstract":"{To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.}","issue":"{0}","langid":"{american}","file":"{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Pollard 2015
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012
:bibtex_type: :misc
---
:bibtex_key: Pollard et al. 2013
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012 Gillmore et al. 2009
:bibtex_type: :misc
---
:bibtex_key: Carvalho 2008
:bibtex_type: :misc
---
:bibtex_key: Flohretal2016
:bibtex_type: :misc
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
:bibtex_key: DoukaJacobs.2014Chrono
:bibtex_type: :misc
---
:bibtex_key: Courtesy Raiko KrauÔøΩ 2016
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: NERD
  :bibtex_type: :article
  :title: "{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500
    Cal. Yr. BP}"
  :shorttitle: "{The NERD Dataset}"
  :author: "{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}"
  :date: "{2022-02-22}"
  :volume: "{10}"
  :number: "{0}"
  :pages: "{2}"
  :publisher: "{Ubiquity Press}"
  :issn: "{2049-1565}"
  :doi: "{10.5334/joad.90}"
  :url: "{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}"
  :urldate: "{2023-09-07}"
  :abstract: "{To our knowledge, the dataset described in this paper represents the
    largest existing repository of uncalibrated radiocarbon dates for the whole Near
    East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP).
    It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected
    comprehensively by cross-checking multiple sources (extant digital archives and
    databases, edited volumes, monographs, journals papers, archaeological excavation
    reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing
    the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape,
    Settlement and Society: Exploring Human-Environment Interaction in the Ancient
    Near East”. This is an ongoing dataset that will be updated step by step with
    newly published radiocarbon dates.}"
  :issue: "{0}"
  :langid: "{american}"
  :file: "{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog