Site types
Settlement, settlement, and

Location

Coordinates (degrees)
035.440° N, 051.550° E
Coordinates (DMS)
035° 26' 00" E, 051° 33' 00" N
Country (ISO 3166)
Iran (IR)

radiocarbon date Radiocarbon dates (102)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
OxA-14736 bone Bos 14C 1967±31 BP Pollard 2015 Weninger 2022
OxA-14737 charcoal Tamarix 14C 5156±37 BP Marshall 2012 Weninger 2022
OxA-14738 bone NA 14C 5050±35 BP Marshall 2012 Weninger 2022
OxA-14739 bone Ovis 14C 5894±37 BP Marshall 2012 Weninger 2022
OxA-14740 charcoal NA 14C 6004±38 BP Marshall 2012 Weninger 2022
OxA-14741 charcoal Populus 14C 5928±35 BP Marshall 2012 Weninger 2022
OxA-14742 charcoal NA 14C 5978±38 BP Marshall 2012 Weninger 2022
OxA-14743 charcoal NA 14C 5976±36 BP Marshall 2012 Weninger 2022
OxA-14744 bone NA 14C 6000±38 BP Marshall 2012 Weninger 2022
OxA-14745 charcoal NA 14C 6100±39 BP Marshall 2012 Weninger 2022
OxA-14746 bone bird 14C 6226±37 BP Marshall 2012 Weninger 2022
OxA-14747 bone Mammalia 14C 6230±45 BP Marshall 2012 Weninger 2022
OxA-14749 tooth Ovis 14C 6152±40 BP Marshall 2012 Weninger 2022
OxA-14750 bone NA 14C 6153±38 BP Marshall 2012 Weninger 2022
OxA-18590 charcoal NA 14C 5972±32 BP Pollard 2015 Weninger 2022
OxA-18591 charcoal NA 14C 6059±33 BP Pollard 2015 Weninger 2022
OxA-18592 charcoal NA 14C 6036±29 BP Pollard 2015 Weninger 2022
OxA-18593 charcoal NA 14C 5983±29 BP Pollard 2015 Weninger 2022
OxA-18762 bone NA 14C 3292±29 BP Pollard 2015 Weninger 2022
OxA-18763 bone NA 14C 3236±29 BP Pollard 2015 Weninger 2022

typological date Typological dates (33)

Classification Estimated age References
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Pollard 2015
Neolithic NA Pollard 2015
Neolithic NA Pollard 2015
Neolithic NA Pollard 2015
Bronze Age NA Pollard 2015
Bronze Age NA Pollard 2015
Bronze Age NA Pollard 2015

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Pollard 2015]
  • No bibliographic information available. [Marshall 2012]
  • No bibliographic information available. [Pollard et al. 2013]
  • No bibliographic information available. [Marshall 2012; Flohr et al. 2016]
  • No bibliographic information available. [Marshall 2012 Gillmore et al. 2009]
  • No bibliographic information available. [Carvalho 2008]
  • No bibliographic information available. [Flohretal2016]
  • No bibliographic information available. [Vermeersch2019]
  • No bibliographic information available. [DoukaJacobs.2014Chrono]
  • No bibliographic information available. [Courtesy Raiko KrauÔøΩ 2016]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Palmisano, A., Bevan, A., Lawrence, D., & Shennan, S. (2022). The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP. 10(0), 2. https://doi.org/10.5334/joad.90 [NERD]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Pollard 2015,
  
}
@misc{Marshall 2012,
  
}
@misc{Pollard et al. 2013,
  
}
@misc{Marshall 2012; Flohr et al. 2016,
  
}
@misc{Marshall 2012 Gillmore et al. 2009,
  
}
@misc{Carvalho 2008,
  
}
@misc{Flohretal2016,
  
}
@misc{Vermeersch2019,
  
}
@misc{DoukaJacobs.2014Chrono,
  
}
@misc{Courtesy Raiko KrauÔøΩ 2016,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{NERD,
  title = {The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP},
  shorttitle = {The NERD Dataset},
  author = {Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen},
  date = {2022-02-22},
  volume = {10},
  number = {0},
  pages = {2},
  publisher = {Ubiquity Press},
  issn = {2049-1565},
  doi = {10.5334/joad.90},
  url = {https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90},
  urldate = {2023-09-07},
  abstract = {To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.},
  issue = {0},
  langid = {american},
  file = {/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Pollard 2015","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012","bibtex_type":"misc"}{"bibtex_key":"Pollard et al. 2013","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012 Gillmore et al. 2009","bibtex_type":"misc"}{"bibtex_key":"Carvalho 2008","bibtex_type":"misc"}{"bibtex_key":"Flohretal2016","bibtex_type":"misc"}{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}{"bibtex_key":"DoukaJacobs.2014Chrono","bibtex_type":"misc"}{"bibtex_key":"Courtesy Raiko KrauÔøΩ 2016","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"NERD","bibtex_type":"article","title":"{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP}","shorttitle":"{The NERD Dataset}","author":"{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}","date":"{2022-02-22}","volume":"{10}","number":"{0}","pages":"{2}","publisher":"{Ubiquity Press}","issn":"{2049-1565}","doi":"{10.5334/joad.90}","url":"{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}","urldate":"{2023-09-07}","abstract":"{To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.}","issue":"{0}","langid":"{american}","file":"{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Pollard 2015
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012
:bibtex_type: :misc
---
:bibtex_key: Pollard et al. 2013
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012 Gillmore et al. 2009
:bibtex_type: :misc
---
:bibtex_key: Carvalho 2008
:bibtex_type: :misc
---
:bibtex_key: Flohretal2016
:bibtex_type: :misc
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
:bibtex_key: DoukaJacobs.2014Chrono
:bibtex_type: :misc
---
:bibtex_key: Courtesy Raiko KrauÔøΩ 2016
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: NERD
  :bibtex_type: :article
  :title: "{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500
    Cal. Yr. BP}"
  :shorttitle: "{The NERD Dataset}"
  :author: "{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}"
  :date: "{2022-02-22}"
  :volume: "{10}"
  :number: "{0}"
  :pages: "{2}"
  :publisher: "{Ubiquity Press}"
  :issn: "{2049-1565}"
  :doi: "{10.5334/joad.90}"
  :url: "{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}"
  :urldate: "{2023-09-07}"
  :abstract: "{To our knowledge, the dataset described in this paper represents the
    largest existing repository of uncalibrated radiocarbon dates for the whole Near
    East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP).
    It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected
    comprehensively by cross-checking multiple sources (extant digital archives and
    databases, edited volumes, monographs, journals papers, archaeological excavation
    reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing
    the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape,
    Settlement and Society: Exploring Human-Environment Interaction in the Ancient
    Near East”. This is an ongoing dataset that will be updated step by step with
    newly published radiocarbon dates.}"
  :issue: "{0}"
  :langid: "{american}"
  :file: "{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog