Site types
Settlement, settlement, and

Location

Coordinates (degrees)
033.757° N, 047.097° E
Coordinates (DMS)
033° 45' 00" E, 047° 05' 00" N
Country (ISO 3166)
Iran (IR)

radiocarbon date Radiocarbon dates (39)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
Beta-117121 bone NA 14C 7820±50 BP Marshall 2012 Weninger 2022
Beta-147111 bone NA 14C 7630±60 BP Marshall 2012 Weninger 2022
Beta-147112 bone NA 14C 7260±40 BP Marshall 2012 Weninger 2022
Beta-147113 bone NA 14C 7950±40 BP Marshall 2012 Weninger 2022
Beta-147114 bone NA 14C 7080±60 BP Marshall 2012 Weninger 2022
Beta-147115 bone NA 14C 7940±40 BP Marshall 2012 Weninger 2022
Beta-147116 bone NA 14C 8130±40 BP Marshall 2012 Weninger 2022
Beta-147117 bone NA 14C 7890±40 BP Marshall 2012 Weninger 2022
Beta-147118 bone NA 14C 8070±40 BP Marshall 2012 Weninger 2022
Beta-147119 bone NA 14C 8000±50 BP Marshall 2012 Weninger 2022
Beta-147120 bone NA 14C 8060±40 BP Marshall 2012 Weninger 2022
Beta-147122 bone NA 14C 8170±40 BP Marshall 2012 Weninger 2022
Beta-147131 bone NA 14C 7810±40 BP Marshall 2012 Weninger 2022
Beta-177177 bone NA 14C 8280±40 BP Marshall 2012 Weninger 2022
K-1006 charcoal Pistacia 14C 8410±200 BP Tauber 1968, 322 Weninger 2022
K-856 charcoal Quercus 14C 3170±120 BP Marshall 2012 Weninger 2022
K-879 charcoal NA 14C 7760±150 BP Tauber 1968, Hole 1987 Weninger 2022
Beta-117121 Level V; V bone NA NA 7820±50 BP Marshall 2012; CalPal; Flohr et al. 2016 Palmisano et al. 2022
Beta-147111 Level D; D bone Animalia NA 7630±60 BP Zeder 2008; CaPal; Marshall 2012 Palmisano et al. 2022
Beta-147112 Level F; F bone Animalia NA 7260±40 BP Zeder 2008; CaPal; Marshall 2012 Palmisano et al. 2022

typological date Typological dates (18)

Classification Estimated age References
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Marshall 2012
Neolithic NA Tauber 1968, 322
PPN NA NA
Neolithic NA Tauber 1968, Hole 1987
PN NA NA

Bibliographic reference Bibliographic references

  • No bibliographic information available. [Marshall 2012]
  • No bibliographic information available. [Tauber 1968, 322]
  • No bibliographic information available. [Tauber 1968, Hole 1987]
  • No bibliographic information available. [Marshall 2012; CalPal; Flohr et al. 2016]
  • No bibliographic information available. [Zeder 2008; CaPal; Marshall 2012]
  • No bibliographic information available. [Zeder 2008]
  • No bibliographic information available. [CalPal; Marshall 2012]
  • No bibliographic information available. [Tauber 1968; Hole 1987; CalPal; Flohr et al. 2016]
  • Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
  • Palmisano, A., Bevan, A., Lawrence, D., & Shennan, S. (2022). The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP. 10(0), 2. https://doi.org/10.5334/joad.90 [NERD]
  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Marshall 2012,
  
}
@misc{Tauber 1968, 322,
  
}
@misc{Tauber 1968, Hole 1987,
  
}
@misc{Marshall 2012; CalPal; Flohr et al. 2016,
  
}
@misc{Zeder 2008; CaPal; Marshall 2012,
  
}
@misc{Zeder 2008,
  
}
@misc{CalPal; Marshall 2012,
  
}
@misc{Tauber 1968; Hole 1987; CalPal; Flohr et al. 2016,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{NERD,
  title = {The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP},
  shorttitle = {The NERD Dataset},
  author = {Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen},
  date = {2022-02-22},
  volume = {10},
  number = {0},
  pages = {2},
  publisher = {Ubiquity Press},
  issn = {2049-1565},
  doi = {10.5334/joad.90},
  url = {https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90},
  urldate = {2023-09-07},
  abstract = {To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.},
  issue = {0},
  langid = {american},
  file = {/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Marshall 2012","bibtex_type":"misc"}{"bibtex_key":"Tauber 1968, 322","bibtex_type":"misc"}{"bibtex_key":"Tauber 1968, Hole 1987","bibtex_type":"misc"}{"bibtex_key":"Marshall 2012; CalPal; Flohr et al. 2016","bibtex_type":"misc"}{"bibtex_key":"Zeder 2008; CaPal; Marshall 2012","bibtex_type":"misc"}{"bibtex_key":"Zeder 2008","bibtex_type":"misc"}{"bibtex_key":"CalPal; Marshall 2012","bibtex_type":"misc"}{"bibtex_key":"Tauber 1968; Hole 1987; CalPal; Flohr et al. 2016","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"NERD","bibtex_type":"article","title":"{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500 Cal. Yr. BP}","shorttitle":"{The NERD Dataset}","author":"{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}","date":"{2022-02-22}","volume":"{10}","number":"{0}","pages":"{2}","publisher":"{Ubiquity Press}","issn":"{2049-1565}","doi":"{10.5334/joad.90}","url":"{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}","urldate":"{2023-09-07}","abstract":"{To our knowledge, the dataset described in this paper represents the largest existing repository of uncalibrated radiocarbon dates for the whole Near East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP). It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected comprehensively by cross-checking multiple sources (extant digital archives and databases, edited volumes, monographs, journals papers, archaeological excavation reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East”. This is an ongoing dataset that will be updated step by step with newly published radiocarbon dates.}","issue":"{0}","langid":"{american}","file":"{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Marshall 2012
:bibtex_type: :misc
---
:bibtex_key: Tauber 1968, 322
:bibtex_type: :misc
---
:bibtex_key: Tauber 1968, Hole 1987
:bibtex_type: :misc
---
:bibtex_key: Marshall 2012; CalPal; Flohr et al. 2016
:bibtex_type: :misc
---
:bibtex_key: Zeder 2008; CaPal; Marshall 2012
:bibtex_type: :misc
---
:bibtex_key: Zeder 2008
:bibtex_type: :misc
---
:bibtex_key: CalPal; Marshall 2012
:bibtex_type: :misc
---
:bibtex_key: Tauber 1968; Hole 1987; CalPal; Flohr et al. 2016
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: NERD
  :bibtex_type: :article
  :title: "{The NERD Dataset: Near East Radiocarbon Dates between 15,000 and 1,500
    Cal. Yr. BP}"
  :shorttitle: "{The NERD Dataset}"
  :author: "{Palmisano, Alessio and Bevan, Andrew and Lawrence, Dan and Shennan, Stephen}"
  :date: "{2022-02-22}"
  :volume: "{10}"
  :number: "{0}"
  :pages: "{2}"
  :publisher: "{Ubiquity Press}"
  :issn: "{2049-1565}"
  :doi: "{10.5334/joad.90}"
  :url: "{https://openarchaeologydata.metajnl.com/articles/10.5334/joad.90}"
  :urldate: "{2023-09-07}"
  :abstract: "{To our knowledge, the dataset described in this paper represents the
    largest existing repository of uncalibrated radiocarbon dates for the whole Near
    East from the Late Pleistocene to the Late Holocene (15,000 – 1,500 cal. yr. BP).
    It is composed of 11,027 radiocarbon dates from 1,023 sites that have been collected
    comprehensively by cross-checking multiple sources (extant digital archives and
    databases, edited volumes, monographs, journals papers, archaeological excavation
    reports, etc.) under the umbrella of the Leverhulme Trust funded project “Changing
    the Face of the Mediterranean” and of the ERC project “CLASS – Climate, Landscape,
    Settlement and Society: Exploring Human-Environment Interaction in the Ancient
    Near East”. This is an ongoing dataset that will be updated step by step with
    newly published radiocarbon dates.}"
  :issue: "{0}"
  :langid: "{american}"
  :file: "{/home/joeroe/g/work/library/2022/Palmisano_et_al_2022.pdf}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog