Site types
Cave and

Location

Coordinates (degrees)
039.680° N, 021.670° E
Coordinates (DMS)
039° 40' 00" E, 021° 40' 00" N
Country (ISO 3166)
Greece (GR)

radiocarbon date Radiocarbon dates (94)

Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
CAMS-21733 charcoal NA 14C 8070±60 BP 9192–8655 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-120 charcoal NA 14C 8525±57 BP 9552–9435 cal BP Facorellis 2003 Weninger 2022
DEM-122 charcoal NA 14C 6221±38 BP 7252–7001 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-124 charcoal NA 14C 714±32 BP 718–563 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-125 charcoal NA 14C 8674±76 BP 9900–9529 cal BP Facorellis 2003 Weninger 2022
DEM-141 charcoal NA 14C 5485±102 BP 6485–6000 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-142 charcoal NA 14C 9722±390 BP 12590–10177 cal BP Gehlen 2010 Weninger 2022
DEM-207 NA 14C 9093±550 BP 11934–8776 cal BP Weninger 2022
DEM-224 charcoal NA 14C 315±87 BP 525–75 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-225 charcoal NA 14C 1287±62 BP 1301–1067 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-243 charcoal NA 14C 607±150 BP 903–306 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-244 charcoal NA 14C 118±76 BP 286–165 cal BP Facorellis et al. 2001, 1029-1084 Weninger 2022
DEM-248 charcoal NA 14C 11882±86 BP 14015–13516 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-249 charcoal NA 14C 10971±87 BP 13075–12756 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-250 charcoal NA 14C 4008±83 BP 4815–4241 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-315 charcoal NA 14C 9275±75 BP 10650–10249 cal BP Facorellis 2003 Weninger 2022
DEM-316 charcoal NA 14C 9348±84 BP 10760–10260 cal BP Facorellis 2003 Weninger 2022
DEM-359 charcoal NA 14C 804±28 BP 738–673 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-361 charcoal NA 14C 6326±94 BP 7426–7003 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022
DEM-454 charcoal NA 14C 6563±68 BP 7574–7327 cal BP Facorellis et al. 2001, 1029-1048 Weninger 2022

typological date Typological dates (11)

Classification Estimated age References
Neo-Meso boundary? NA Facorellis et al. 2001, 1029-1048
Neo-Meso boundary? NA Facorellis et al. 2001, 1029-1048
Neolithic? NA Facorellis et al. 2001, 1029-1048
pottery neolithic? NA NA
Neolithic? NA Facorellis et al. 2001, 1029-1048
pottery neolithic? NA NA
Neolithic? NA Facorellis et al. 2001, 1029-1048
Neolithic? NA Facorellis et al. 2001, 1029-1048
Neolithic? NA Facorellis et al. 2001, 1029-1048
Epipalaeolithic NA Facorellis 2003
Neolithic? NA NA

Bibliographic reference Bibliographic references

@misc{Facorellis et al. 2001, 1029-1048,
  
}
@misc{Facorellis 2003,
  
}
@misc{Gehlen 2010,
  
}
@misc{Facorellis et al. 2001, 1029-1084,
  
}
@misc{Reingruber and Thissen 2005,
  
}
@misc{Facorellis 2013,
  
}
@misc{Facorellis et al RC 43 Nr 2B 2001 1029-1048. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.,
  
}
@misc{Kozlowski J. 2000 In: Bar-Yosef & Pilbeam The Geography of Neandertals and Modern Humans in Europe n Peabody Museum Bulletin 8: 77-106 Facorellis 2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.,
  
}
@misc{Facorellis et al. 2001 1029-1048,
  
}
@article{Vermeersch2020,
  title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
  author = {Vermeersch, Pierre M},
  year = {2020},
  month = {aug},
  journal = {Data Brief},
  volume = {31},
  pages = {105793},
  issn = {2352-3409},
  doi = {10.1016/j.dib.2020.105793},
  abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
  month_numeric = {8}
}
@misc{Facorellis et al. 2001: 1034–7,
  
}
@misc{Facorellis et al. 2001 1029-1084,
  
}
@misc{Maniatis 2014: 207f,
  
}
@misc{Kyparissi in press. Karkanas P. 2001. Geoarchaeology 16: 373-399. Facorellis 2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.,
  
}
@misc{Facorellis 2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.,
  
}
@misc{Bonsall et al. 2007,
  
}
@misc{Ramsey C.B. Higham T.F.G. Owen D.C. Pike A.W.G. and Hedges R.E.M. 2002. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 31.Archaeometry44(s1) pp.1-150.,
  
}
@misc{Karkanas P. 2001. Geoarchaeology 16: 373-399. Galanidou  2000. Antiquity. Adam 2007 Paleo. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.,
  
}
@misc{Karkanas P. 2001. Geoarchaeology 16: 373-399..Facorellis Y. 2001. Radiocarbon 43: 1036.,
  
}
@misc{Lee Sep 2010,
  
}
@misc{CalPal,
  title = {CalPal Edition 2022.9},
  author = {Weninger, Bernie},
  year = {2022},
  month = {sep},
  doi = {1010.5281/zenodo.7422618},
  url = {https://zenodo.org/record/7422618},
  abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
  copyright = {Creative Commons Attribution 4.0 International, Open Access},
  howpublished = {Zenodo},
  month_numeric = {9}
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
{"bibtex_key":"Facorellis et al. 2001, 1029-1048","bibtex_type":"misc"}{"bibtex_key":"Facorellis 2003","bibtex_type":"misc"}{"bibtex_key":"Gehlen 2010","bibtex_type":"misc"}{"bibtex_key":"Facorellis et al. 2001, 1029-1084","bibtex_type":"misc"}{"bibtex_key":"Reingruber and Thissen 2005","bibtex_type":"misc"}{"bibtex_key":"Facorellis 2013","bibtex_type":"misc"}{"bibtex_key":"Facorellis et al RC 43 Nr 2B 2001 1029-1048. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.","bibtex_type":"misc"}{"bibtex_key":"Kozlowski J. 2000 In: Bar-Yosef & Pilbeam The Geography of Neandertals and Modern Humans in Europe n Peabody Museum Bulletin 8: 77-106 Facorellis 2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.","bibtex_type":"misc"}{"bibtex_key":"Facorellis et al. 2001 1029-1048","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"Facorellis et al. 2001: 1034–7","bibtex_type":"misc"}{"bibtex_key":"Facorellis et al. 2001 1029-1084","bibtex_type":"misc"}{"bibtex_key":"Maniatis 2014: 207f","bibtex_type":"misc"}{"bibtex_key":"Kyparissi in press. Karkanas P. 2001. Geoarchaeology 16: 373-399. Facorellis 2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.","bibtex_type":"misc"}{"bibtex_key":"Facorellis 2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.","bibtex_type":"misc"}{"bibtex_key":"Bonsall et al. 2007","bibtex_type":"misc"}{"bibtex_key":"Ramsey C.B. Higham T.F.G. Owen D.C. Pike A.W.G. and Hedges R.E.M. 2002. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 31.Archaeometry44(s1) pp.1-150.","bibtex_type":"misc"}{"bibtex_key":"Karkanas P. 2001. Geoarchaeology 16: 373-399. Galanidou  2000. Antiquity. Adam 2007 Paleo. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.","bibtex_type":"misc"}{"bibtex_key":"Karkanas P. 2001. Geoarchaeology 16: 373-399..Facorellis Y. 2001. Radiocarbon 43: 1036.","bibtex_type":"misc"}{"bibtex_key":"Lee Sep 2010","bibtex_type":"misc"}[{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: Facorellis et al. 2001, 1029-1048
:bibtex_type: :misc
---
:bibtex_key: Facorellis 2003
:bibtex_type: :misc
---
:bibtex_key: Gehlen 2010
:bibtex_type: :misc
---
:bibtex_key: Facorellis et al. 2001, 1029-1084
:bibtex_type: :misc
---
:bibtex_key: Reingruber and Thissen 2005
:bibtex_type: :misc
---
:bibtex_key: Facorellis 2013
:bibtex_type: :misc
---
:bibtex_key: 'Facorellis et al RC 43 Nr 2B 2001 1029-1048. Facorellis Y.  2013. Radiocarbon
  55: 1432-1442.'
:bibtex_type: :misc
---
:bibtex_key: 'Kozlowski J. 2000 In: Bar-Yosef & Pilbeam The Geography of Neandertals
  and Modern Humans in Europe n Peabody Museum Bulletin 8: 77-106 Facorellis 2001.
  Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.'
:bibtex_type: :misc
---
:bibtex_key: Facorellis et al. 2001 1029-1048
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
  :bibtex_type: :article
  :title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
    of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
  :author: "{Vermeersch, Pierre M}"
  :year: "{2020}"
  :month: "{aug}"
  :journal: "{Data Brief}"
  :volume: "{31}"
  :pages: "{105793}"
  :issn: "{2352-3409}"
  :doi: "{10.1016/j.dib.2020.105793}"
  :abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
    Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
    was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
    humaine, Paris). One of the objectives was building a database of the human occupation
    of Europe during this period. The database has been enlarged and now includes
    Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
    conditions and the available chronometric dating. From version 14 on, only sites
    with chronometric data were included. In this database we have collected the available
    radiometric data from literature and from other more restricted databases. We
    try to incorporate newly published chronometric dates, collected from all kind
    of available publications. Only dates older than 9500 uncalibrated BP, correlated
    with a "cultural" level obtained by scientific excavations of European (Asian
    Russian Federation included) Palaeolithic sites, have been included. The dates
    are complemented with information related to cultural remains, stratigraphic,
    sedimentologic and palaeontologic information within a Microsoft Access database.
    For colleagues mainly interested in a list of all chronometric dates an Microsoft
    Excel list (with no details) is available (Tab. 1). A file, containing all sites
    with known coordinates, that can be opened for immediate use in Google Earth is
    available as a *.kmz file. It will give the possibility to introduce (by file
    open) in Google Earth the whole site list in "My Places". The database, version
    27 (first version was available in 2002), contains now 13,202 site forms, (most
    of them with their geographical coordinates), comprising 17,022 radiometric data:
    Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
    and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
    are conventional dates BP. This improved version 27 replaces the older version
    26.}'
  :month_numeric: "{8}"
---
:bibtex_key: 'Facorellis et al. 2001: 1034–7'
:bibtex_type: :misc
---
:bibtex_key: Facorellis et al. 2001 1029-1084
:bibtex_type: :misc
---
:bibtex_key: 'Maniatis 2014: 207f'
:bibtex_type: :misc
---
:bibtex_key: 'Kyparissi in press. Karkanas P. 2001. Geoarchaeology 16: 373-399. Facorellis
  2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.'
:bibtex_type: :misc
---
:bibtex_key: 'Facorellis 2001. Radiocarbon 43: 1037. Facorellis Y.  2013. Radiocarbon
  55: 1432-1442.'
:bibtex_type: :misc
---
:bibtex_key: Bonsall et al. 2007
:bibtex_type: :misc
---
:bibtex_key: 'Ramsey C.B. Higham T.F.G. Owen D.C. Pike A.W.G. and Hedges R.E.M. 2002.
  Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 31.Archaeometry44(s1)
  pp.1-150.'
:bibtex_type: :misc
---
:bibtex_key: 'Karkanas P. 2001. Geoarchaeology 16: 373-399. Galanidou  2000. Antiquity.
  Adam 2007 Paleo. Facorellis Y.  2013. Radiocarbon 55: 1432-1442.'
:bibtex_type: :misc
---
:bibtex_key: 'Karkanas P. 2001. Geoarchaeology 16: 373-399..Facorellis Y. 2001. Radiocarbon
  43: 1036.'
:bibtex_type: :misc
---
:bibtex_key: Lee Sep 2010
:bibtex_type: :misc
---
- :bibtex_key: CalPal
  :bibtex_type: :misc
  :title: "{CalPal Edition 2022.9}"
  :author: "{Weninger, Bernie}"
  :year: "{2022}"
  :month: "{sep}"
  :doi: "{1010.5281/zenodo.7422618}"
  :url: "{https://zenodo.org/record/7422618}"
  :abstract: "{CalPal is scientific freeware for 14C-based chronological research
    for Holocene and Palaeolithic Archaeology.}"
  :copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
  :howpublished: "{Zenodo}"
  :month_numeric: "{9}"
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Changelog