Gif-3786

radiocarbon date Radiocarbon date from Grotte des Planche-près-Arbois, c. 3444–3066 cal BP
Record created in XRONOS on 2022-12-02 00:50:45 UTC. Last updated on 2022-12-02 00:50:45 UTC. See changelog for details.
Contributors: XRONOS development team

Measurement

Age (uncal BP)
3060
Error (±)
70
Lab
NA
Method
NA
Sample material
Sample taxon
NA

Calibration

Calibration curve
IntCal20 (Reimer et al. 2020)
Calibrated age (2σ, cal BP)
  • 3444–3426
  • 3405–3066

Context

Site
Grotte des Planche-près-Arbois
Context
Nivel D2
Sample position
NA
Sample coordinates
NA

Bibliographic reference Bibliographic references (3)

  • No bibliographic information available. [BSPF VOL 82 FASC.10-12 P.483]
  • https://telearchaeology.org/EUBAR/ [EUBAR]
  • Capuzzo, G., Boaretto, E., & Barceló, J. A. (2014). EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France. Radiocarbon, 56(2), 851–869. https://doi.org/10.2458/56.17453 [EUBAR]
@misc{BSPF VOL 82 FASC.10-12 P.483,
  
}
@misc{EUBAR,
  url = {https://telearchaeology.org/EUBAR/},
  note = {CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}
}
@article{CapuzzoEtAl2014,
  title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
  shorttitle = {EUBAR},
  author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
  year = {2014},
  month = {jan},
  journal = {Radiocarbon},
  volume = {56},
  number = {2},
  pages = {851–869},
  issn = {0033-8222, 1945-5755},
  doi = {10.2458/56.17453},
  abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
  langid = {english},
  month_numeric = {1}
}
{"bibtex_key":"BSPF VOL 82 FASC.10-12 P.483","bibtex_type":"misc"}[{"bibtex_key":"EUBAR","bibtex_type":"misc","url":"{https://telearchaeology.org/EUBAR/}","note":"{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"}][{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}]
---
:bibtex_key: BSPF VOL 82 FASC.10-12 P.483
:bibtex_type: :misc
---
- :bibtex_key: EUBAR
  :bibtex_type: :misc
  :url: "{https://telearchaeology.org/EUBAR/}"
  :note: "{CAPUZZO G, BOARETTO E, BARCELÓ JA. 2014. EUBAR: A database of 14C measurements
    for the European Bronze Age. A Bayesian analysis of 14C-dated archaeological contexts
    from Northern Italy and Southern France. Radiocarbon 56(2):851-69.}"
---
- :bibtex_key: CapuzzoEtAl2014
  :bibtex_type: :article
  :title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
    Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
    France}"
  :shorttitle: "{EUBAR}"
  :author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
  :year: "{2014}"
  :month: "{jan}"
  :journal: "{Radiocarbon}"
  :volume: "{56}"
  :number: "{2}"
  :pages: "{851–869}"
  :issn: "{0033-8222, 1945-5755}"
  :doi: "{10.2458/56.17453}"
  :abstract: "{The chronological framework of European protohistory is mostly a relative
    chronology based on typology and stratigraphic data. Synchronization of different
    time periods suffers from a lack of absolute dates; therefore, disagreements between
    different chronological schemes are difficult to reconcile. An alternative approach
    was applied in this study to build a more precise and accurate absolute chronology.
    To the best of our knowledge, we have collected all the published 14C dates for
    the archaeological sites in the region from the Ebro River (Spain) to the Middle
    Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
    information associated with the 14C dates was organized in a database that totaled
    more than 1600 14C dates. In order to build an accurate and precise chronology,
    quality selection rules have been applied to the 14C dates based on both archaeological
    context and analytical quality. Using the OxCal software and Bayesian analysis,
    several 14C time sequences were created following the archaeological data and
    different possible scenarios were tested in northern Italy and southern France.}"
  :langid: "{english}"
  :month_numeric: "{1}"

Changelog