S-722
Radiocarbon date from
Manyfingers,
c. 1525–1193 cal BP
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Measurement
- Age (uncal BP)
- 1460
- Error (±)
- 75
- Lab
- NA
- Method
- NA
- Sample material
- bison bone collagen; collagène osseux de bison
- Sample taxon
- NA
Calibration
- Calibration curve
- IntCal20 (Reimer et al. 2020)
- Calibrated age (2σ, cal BP)
-
- 1525–1273
- 1199–1193
Context
- Site
- Manyfingers
- Context
- Sample position
- NA
- Sample coordinates
- NA
Bibliographic references (6)
- No bibliographic information available. [Brumley and Rushworth 1983; Wilmeth 1978; Rutherford et al. 1975; Quigg 1974; Faunmap 3929]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
- No bibliographic information available. [Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al. 1975 1979; Faunmap 3937]
- No bibliographic information available. [Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al. 1975 1979]
- No bibliographic information available. [Wilmeth 1978; Rutherford et al. 1979; Carignan 1977]
- No bibliographic information available. [Rutherford et al. 1984; Dickson 1976; Tisdale and Jamieson 1982; Wiersum and Tisdale 1977]
@misc{Brumley and Rushworth 1983; Wilmeth 1978; Rutherford et al. 1975; Quigg 1974; Faunmap 3929,
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
@misc{Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al. 1975 1979; Faunmap 3937,
}
@misc{Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al. 1975 1979,
}
@misc{Wilmeth 1978; Rutherford et al. 1979; Carignan 1977,
}
@misc{Rutherford et al. 1984; Dickson 1976; Tisdale and Jamieson 1982; Wiersum and Tisdale 1977,
}
{"bibtex_key":"Brumley and Rushworth 1983; Wilmeth 1978; Rutherford et al. 1975; Quigg 1974; Faunmap 3929","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]{"bibtex_key":"Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al. 1975 1979; Faunmap 3937","bibtex_type":"misc"}{"bibtex_key":"Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al. 1975 1979","bibtex_type":"misc"}{"bibtex_key":"Wilmeth 1978; Rutherford et al. 1979; Carignan 1977","bibtex_type":"misc"}{"bibtex_key":"Rutherford et al. 1984; Dickson 1976; Tisdale and Jamieson 1982; Wiersum and Tisdale 1977","bibtex_type":"misc"}
---
:bibtex_key: Brumley and Rushworth 1983; Wilmeth 1978; Rutherford et al. 1975; Quigg
1974; Faunmap 3929
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"
---
:bibtex_key: Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al.
1975 1979; Faunmap 3937
:bibtex_type: :misc
---
:bibtex_key: Brumley and Rushworth 1983; Quigg 1974 1975a 1988; Rutherford et al.
1975 1979
:bibtex_type: :misc
---
:bibtex_key: Wilmeth 1978; Rutherford et al. 1979; Carignan 1977
:bibtex_type: :misc
---
:bibtex_key: Rutherford et al. 1984; Dickson 1976; Tisdale and Jamieson 1982; Wiersum
and Tisdale 1977
:bibtex_type: :misc