RTT-4788

radiocarbon date Radiocarbon date from Klisoura Cave 1 Klissoura Cave 1
Record created in XRONOS on 2022-12-02 00:50:45 UTC. Last updated on 2022-12-02 00:50:45 UTC. See changelog for details.
Contributors: XRONOS development team

Measurement

Age (uncal BP)
22270
Error (±)
160
Lab
NA
Method
NA
Sample material
charcoal
Sample taxon
NA

Calibration

Calibration curve
IntCal20 (Reimer et al. 2020)
Calibrated age (2σ, BP)
27006 - 26225
26210 - 26088

Context

Site
Klisoura Cave 1 Klissoura Cave 1
Context
Sample position
NA
Sample coordinates
NA

Bibliographic reference Bibliographic references (16)

@misc{Khalaily 2007,
  
}
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
@misc{Koumouzelis M. The Early Upper Palaeolithic in Greece: The Excavations in Klisoura Cave Journal of Archaeological Science 2001 28 515-539. Kuhn S.L.  Eurasian Prehistory 7: 37-46.,
  
}
@misc{Kuhn S.L.  2010. Eurasian Prehistory 7: 37-46.,
  
}
@misc{Kuhn S.L.  Eurasian Prehistory 7: 37-46.,
  
}
@misc{Straus L.G. 1996. Continuity or Rupture. In: The Last Neanderthals. Flas D. 2008.Anthropologica et Praehistorica 119: 3-253. Krajcarz M.T.  Archaeometry 60 2 (2018) 383-401.,
  
}
@misc{Vermeersch2019,
  
}
@misc{Sampson et al. 2002: 48 62 Facorellis et al. 2010: 133 Table 3,
  
}
@misc{Koumouzelis M. The Early Upper Palaeolithic in Greece: The Excavations in Klisoura Cave Journal of Archaeological Science 2001 28 515-539,
  
}
@misc{Czebreszuk et al. 1997 41 Tab. 11,
  
}
@misc{Otte M.  Sedimentary Deposition rates and Carbon-14. JAS 2003 30: 325-341,
  
}
@misc{EgyRadDat,
  
}
@misc{Barich.2016Intro,
  
}
@misc{White  2012 PNAS 109: 8542.,
  
}
@misc{Zilhao J. 2006. Pyrenae 37:7-84. Mallol C  2010 QI 214: 70-81. Maroto J.  2012. QI 247: 15-25. Wood R.  2016. QI ip.,
  
}
@misc{Nikolov 2016,
  
}
{"bibtex_key":"Khalaily 2007","bibtex_type":"misc"}[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]{"bibtex_key":"Koumouzelis M. The Early Upper Palaeolithic in Greece: The Excavations in Klisoura Cave Journal of Archaeological Science 2001 28 515-539. Kuhn S.L.  Eurasian Prehistory 7: 37-46.","bibtex_type":"misc"}{"bibtex_key":"Kuhn S.L.  2010. Eurasian Prehistory 7: 37-46.","bibtex_type":"misc"}{"bibtex_key":"Kuhn S.L.  Eurasian Prehistory 7: 37-46.","bibtex_type":"misc"}{"bibtex_key":"Straus L.G. 1996. Continuity or Rupture. In: The Last Neanderthals. Flas D. 2008.Anthropologica et Praehistorica 119: 3-253. Krajcarz M.T.  Archaeometry 60 2 (2018) 383-401.","bibtex_type":"misc"}{"bibtex_key":"Vermeersch2019","bibtex_type":"misc"}{"bibtex_key":"Sampson et al. 2002: 48 62 Facorellis et al. 2010: 133 Table 3","bibtex_type":"misc"}{"bibtex_key":"Koumouzelis M. The Early Upper Palaeolithic in Greece: The Excavations in Klisoura Cave Journal of Archaeological Science 2001 28 515-539","bibtex_type":"misc"}{"bibtex_key":"Czebreszuk et al. 1997 41 Tab. 11","bibtex_type":"misc"}{"bibtex_key":"Otte M.  Sedimentary Deposition rates and Carbon-14. JAS 2003 30: 325-341","bibtex_type":"misc"}{"bibtex_key":"EgyRadDat","bibtex_type":"misc"}{"bibtex_key":"Barich.2016Intro","bibtex_type":"misc"}{"bibtex_key":"White  2012 PNAS 109: 8542.","bibtex_type":"misc"}{"bibtex_key":"Zilhao J. 2006. Pyrenae 37:7-84. Mallol C  2010 QI 214: 70-81. Maroto J.  2012. QI 247: 15-25. Wood R.  2016. QI ip.","bibtex_type":"misc"}{"bibtex_key":"Nikolov 2016","bibtex_type":"misc"}
---
:bibtex_key: Khalaily 2007
:bibtex_type: :misc
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"
---
:bibtex_key: 'Koumouzelis M. The Early Upper Palaeolithic in Greece: The Excavations
  in Klisoura Cave Journal of Archaeological Science 2001 28 515-539. Kuhn S.L.  Eurasian
  Prehistory 7: 37-46.'
:bibtex_type: :misc
---
:bibtex_key: 'Kuhn S.L.  2010. Eurasian Prehistory 7: 37-46.'
:bibtex_type: :misc
---
:bibtex_key: 'Kuhn S.L.  Eurasian Prehistory 7: 37-46.'
:bibtex_type: :misc
---
:bibtex_key: 'Straus L.G. 1996. Continuity or Rupture. In: The Last Neanderthals.
  Flas D. 2008.Anthropologica et Praehistorica 119: 3-253. Krajcarz M.T.  Archaeometry
  60 2 (2018) 383-401.'
:bibtex_type: :misc
---
:bibtex_key: Vermeersch2019
:bibtex_type: :misc
---
:bibtex_key: 'Sampson et al. 2002: 48 62 Facorellis et al. 2010: 133 Table 3'
:bibtex_type: :misc
---
:bibtex_key: 'Koumouzelis M. The Early Upper Palaeolithic in Greece: The Excavations
  in Klisoura Cave Journal of Archaeological Science 2001 28 515-539'
:bibtex_type: :misc
---
:bibtex_key: Czebreszuk et al. 1997 41 Tab. 11
:bibtex_type: :misc
---
:bibtex_key: 'Otte M.  Sedimentary Deposition rates and Carbon-14. JAS 2003 30: 325-341'
:bibtex_type: :misc
---
:bibtex_key: EgyRadDat
:bibtex_type: :misc
---
:bibtex_key: Barich.2016Intro
:bibtex_type: :misc
---
:bibtex_key: 'White  2012 PNAS 109: 8542.'
:bibtex_type: :misc
---
:bibtex_key: 'Zilhao J. 2006. Pyrenae 37:7-84. Mallol C  2010 QI 214: 70-81. Maroto
  J.  2012. QI 247: 15-25. Wood R.  2016. QI ip.'
:bibtex_type: :misc
---
:bibtex_key: Nikolov 2016
:bibtex_type: :misc

Changelog