Gif-3044
Radiocarbon date from
Grotte du Phare,
c. 3442–2879 cal BP
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Measurement
- Age (uncal BP)
- 3000
- Error (±)
- 110
- Lab
- NA
- Method
- 14C
- Sample material
- Sample taxon
- NA
Calibration
- Calibration curve
- IntCal20 (Reimer et al. 2020)
- Calibrated age (2σ, cal BP)
-
- 3442–3429
- 3401–2915
- 2910–2879
Context
- Site
- Grotte du Phare
- Context
- Sample position
- NA
- Sample coordinates
- NA
Bibliographic references (7)
- Capuzzo, G., Boaretto, E., & Barceló, J. A. (2014). EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France. Radiocarbon, 56(2), 851–869. https://doi.org/10.2458/56.17453 [EUBAR]
- Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
- Manning, K., Timpson, A., Colledge, S., Crema, E., & Shennan, S. (2015). The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset [Data set]. https://discovery.ucl.ac.uk/id/eprint/1469811/ [EUROEVOL]
- No bibliographic information available. [MARIEZKURRENA K. 1979, p. 249. CAILLAT P. 1984, pp. 355-356. CHAUCAT C. 1984, pp. 343-354, figg. 14 (4-7), 15. MAREMBERT F., DUMONTIER P., DELFOUR G. 1998, pp. 118-120.]
- No bibliographic information available. [MAREMBERT F., DUMONTIER P., DELFOUR G. 1998, pp. 118-120. BANADORA]
- Vermeersch, P. M. (2020). Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included. Data Brief, 31, 105793. https://doi.org/10.1016/j.dib.2020.105793 [Vermeersch 2020]
- No bibliographic information available. [Bosset 2010]
@article{CapuzzoEtAl2014,
title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
shorttitle = {EUBAR},
author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
year = {2014},
month = {jan},
journal = {Radiocarbon},
volume = {56},
number = {2},
pages = {851–869},
issn = {0033-8222, 1945-5755},
doi = {10.2458/56.17453},
abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
langid = {english},
month_numeric = {1}
}
@misc{CalPal,
title = {CalPal Edition 2022.9},
author = {Weninger, Bernie},
year = {2022},
month = {sep},
doi = {1010.5281/zenodo.7422618},
url = {https://zenodo.org/record/7422618},
abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
copyright = {Creative Commons Attribution 4.0 International, Open Access},
howpublished = {Zenodo},
month_numeric = {9}
}
@dataset{EUROEVOL,
title = {The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset},
author = {Manning, K. and Timpson, A. and Colledge, S. and Crema, E. and Shennan, S.},
date = {2015-07-09},
url = {https://discovery.ucl.ac.uk/id/eprint/1469811/},
urldate = {2023-09-07},
abstract = {This dataset comprises the primary data collected for the Cultural Evolution of Neolithic Europe project (EUROEVOL), led by Professor Stephen Shennan, UCL. The dataset offers the largest repository of archaeological site and radiocarbon data from Neolithic Europe (4,757 sites and 14,131 radiocarbon samples), dating between the late Mesolithic and Early Bronze Age, as well as the largest collections of archaeobotanical data (>8300 records for 729 different species, genera and families, and the largest collection of animal bone data with >3 million NISP counts and >36,000 biometrics.},
langid = {english}
}
@misc{MARIEZKURRENA K. 1979, p. 249.
CAILLAT P. 1984, pp. 355-356.
CHAUCAT C. 1984, pp. 343-354, figg. 14 (4-7), 15.
MAREMBERT F., DUMONTIER P., DELFOUR G. 1998, pp. 118-120.,
}
@misc{MAREMBERT F., DUMONTIER P., DELFOUR G. 1998, pp. 118-120.
BANADORA,
}
@article{Vermeersch2020,
title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
author = {Vermeersch, Pierre M},
year = {2020},
month = {aug},
journal = {Data Brief},
volume = {31},
pages = {105793},
issn = {2352-3409},
doi = {10.1016/j.dib.2020.105793},
abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
month_numeric = {8}
}
@misc{Bosset 2010,
}
[{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}][{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"EUROEVOL","bibtex_type":"dataset","title":"{The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset}","author":"{Manning, K. and Timpson, A. and Colledge, S. and Crema, E. and Shennan, S.}","date":"{2015-07-09}","url":"{https://discovery.ucl.ac.uk/id/eprint/1469811/}","urldate":"{2023-09-07}","abstract":"{This dataset comprises the primary data collected for the Cultural Evolution of Neolithic Europe project (EUROEVOL), led by Professor Stephen Shennan, UCL. The dataset offers the largest repository of archaeological site and radiocarbon data from Neolithic Europe (4,757 sites and 14,131 radiocarbon samples), dating between the late Mesolithic and Early Bronze Age, as well as the largest collections of archaeobotanical data (>8300 records for 729 different species, genera and families, and the largest collection of animal bone data with >3 million NISP counts and >36,000 biometrics.}","langid":"{english}"}]{"bibtex_key":"MARIEZKURRENA K. 1979, p. 249.\r\nCAILLAT P. 1984, pp. 355-356.\r\nCHAUCAT C. 1984, pp. 343-354, figg. 14 (4-7), 15.\r\nMAREMBERT F., DUMONTIER P., DELFOUR G. 1998, pp. 118-120.","bibtex_type":"misc"}{"bibtex_key":"MAREMBERT F., DUMONTIER P., DELFOUR G. 1998, pp. 118-120.\r\nBANADORA","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"Bosset 2010","bibtex_type":"misc"}
---
- :bibtex_key: CapuzzoEtAl2014
:bibtex_type: :article
:title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
France}"
:shorttitle: "{EUBAR}"
:author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
:year: "{2014}"
:month: "{jan}"
:journal: "{Radiocarbon}"
:volume: "{56}"
:number: "{2}"
:pages: "{851–869}"
:issn: "{0033-8222, 1945-5755}"
:doi: "{10.2458/56.17453}"
:abstract: "{The chronological framework of European protohistory is mostly a relative
chronology based on typology and stratigraphic data. Synchronization of different
time periods suffers from a lack of absolute dates; therefore, disagreements between
different chronological schemes are difficult to reconcile. An alternative approach
was applied in this study to build a more precise and accurate absolute chronology.
To the best of our knowledge, we have collected all the published 14C dates for
the archaeological sites in the region from the Ebro River (Spain) to the Middle
Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
information associated with the 14C dates was organized in a database that totaled
more than 1600 14C dates. In order to build an accurate and precise chronology,
quality selection rules have been applied to the 14C dates based on both archaeological
context and analytical quality. Using the OxCal software and Bayesian analysis,
several 14C time sequences were created following the archaeological data and
different possible scenarios were tested in northern Italy and southern France.}"
:langid: "{english}"
:month_numeric: "{1}"
---
- :bibtex_key: CalPal
:bibtex_type: :misc
:title: "{CalPal Edition 2022.9}"
:author: "{Weninger, Bernie}"
:year: "{2022}"
:month: "{sep}"
:doi: "{1010.5281/zenodo.7422618}"
:url: "{https://zenodo.org/record/7422618}"
:abstract: "{CalPal is scientific freeware for 14C-based chronological research
for Holocene and Palaeolithic Archaeology.}"
:copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
:howpublished: "{Zenodo}"
:month_numeric: "{9}"
---
- :bibtex_key: EUROEVOL
:bibtex_type: :dataset
:title: "{The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset}"
:author: "{Manning, K. and Timpson, A. and Colledge, S. and Crema, E. and Shennan,
S.}"
:date: "{2015-07-09}"
:url: "{https://discovery.ucl.ac.uk/id/eprint/1469811/}"
:urldate: "{2023-09-07}"
:abstract: "{This dataset comprises the primary data collected for the Cultural
Evolution of Neolithic Europe project (EUROEVOL), led by Professor Stephen Shennan,
UCL. The dataset offers the largest repository of archaeological site and radiocarbon
data from Neolithic Europe (4,757 sites and 14,131 radiocarbon samples), dating
between the late Mesolithic and Early Bronze Age, as well as the largest collections
of archaeobotanical data (>8300 records for 729 different species, genera and
families, and the largest collection of animal bone data with >3 million NISP
counts and >36,000 biometrics.}"
:langid: "{english}"
---
:bibtex_key: "MARIEZKURRENA K. 1979, p. 249.\r\nCAILLAT P. 1984, pp. 355-356.\r\nCHAUCAT
C. 1984, pp. 343-354, figg. 14 (4-7), 15.\r\nMAREMBERT F., DUMONTIER P., DELFOUR
G. 1998, pp. 118-120."
:bibtex_type: :misc
---
:bibtex_key: "MAREMBERT F., DUMONTIER P., DELFOUR G. 1998, pp. 118-120.\r\nBANADORA"
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
:bibtex_type: :article
:title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
:author: "{Vermeersch, Pierre M}"
:year: "{2020}"
:month: "{aug}"
:journal: "{Data Brief}"
:volume: "{31}"
:pages: "{105793}"
:issn: "{2352-3409}"
:doi: "{10.1016/j.dib.2020.105793}"
:abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
humaine, Paris). One of the objectives was building a database of the human occupation
of Europe during this period. The database has been enlarged and now includes
Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
conditions and the available chronometric dating. From version 14 on, only sites
with chronometric data were included. In this database we have collected the available
radiometric data from literature and from other more restricted databases. We
try to incorporate newly published chronometric dates, collected from all kind
of available publications. Only dates older than 9500 uncalibrated BP, correlated
with a "cultural" level obtained by scientific excavations of European (Asian
Russian Federation included) Palaeolithic sites, have been included. The dates
are complemented with information related to cultural remains, stratigraphic,
sedimentologic and palaeontologic information within a Microsoft Access database.
For colleagues mainly interested in a list of all chronometric dates an Microsoft
Excel list (with no details) is available (Tab. 1). A file, containing all sites
with known coordinates, that can be opened for immediate use in Google Earth is
available as a *.kmz file. It will give the possibility to introduce (by file
open) in Google Earth the whole site list in "My Places". The database, version
27 (first version was available in 2002), contains now 13,202 site forms, (most
of them with their geographical coordinates), comprising 17,022 radiometric data:
Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
are conventional dates BP. This improved version 27 replaces the older version
26.}'
:month_numeric: "{8}"
---
:bibtex_key: Bosset 2010
:bibtex_type: :misc